Skip to main content

Identification of mRNA Polyadenylation Sites in Genomes Using cDNA Sequences, Expressed Sequence Tags, and Trace

  • Protocol
Post-Transcriptional Gene Regulation

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 419))

Summary

Polyadenylation of nascent transcripts is an essential step for most mRNAs in eukaryotic cells. It is directly involved in the termination of transcription and is coupled with other steps of pre-mRNA processing. Recent studies have shown that transcript variants resulting from alternative polyadenylation are widespread for human and mouse genes, contributing to the complexity of mRNA pool in the cell. In addition to 3′-most exons, alternative polyadenylation sites (or poly(A) sites) can be located in internal exons and introns. Identification of poly(A) sites in genomes is critical for understanding the occurrence and significance of alternative polyadenylation events. Bioinformatic methods using cDNA sequences, Expressed Sequence Tags (ESTs), and Trace offer a sensitive and systematic approach to detect poly(A) sites in genomes. Various criteria can be employed to enhance the specificity of the detection, including identifying sequences derived from internal priming of mRNA and polyadenylated RNAs during degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Edmonds, M. (2002) A history of poly A sequences: from formation to factors to function. Prog Nucleic Acid Res Mol Biol, 71, 285–389.

    Article  CAS  PubMed  Google Scholar 

  2. Marzluff, W.F. (2005) Metazoan replication-dependent histone mRNAs: a distinct set of RNA polymerase II transcripts. Curr Opin Cell Biol, 17, 274–280.

    Article  CAS  PubMed  Google Scholar 

  3. Mangus, D.A., Evans, M.C. and Jacobson, A. (2003) Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol, 4, 223.

    Article  PubMed  Google Scholar 

  4. Wickens, M., Anderson, P. and Jackson, R.J. (1997) Life and death in the cytoplasm: messages from the 3’ end. Curr Opin Genet Dev, 7, 220–232.

    Article  CAS  PubMed  Google Scholar 

  5. Colgan, D.F. and Manley, J.L. (1997) Mechanism and regulation of mRNA polyadenylation. Genes Dev, 11, 2755–2766.

    Article  CAS  PubMed  Google Scholar 

  6. Zhao, J., Hyman, L. and Moore, C. (1999) Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev, 63, 405–445.

    CAS  PubMed  Google Scholar 

  7. Minvielle-Sebastia, L. and Keller, W. (1999) mRNA polyadenylation and its coupling to other RNA processing reactions and to transcription. Curr Opin Cell Biol, 11, 352–357.

    Article  CAS  PubMed  Google Scholar 

  8. Proudfoot, N. (2004) New perspectives on connecting messenger RNA 3″ end formation to transcription. Curr Opin Cell Biol, 16, 272–278.

    Article  CAS  PubMed  Google Scholar 

  9. Tian, B., Hu, J., Zhang, H. and Lutz, C.S. (2005) A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res, 33, 201–212.

    Article  CAS  PubMed  Google Scholar 

  10. Pauws, E., van Kampen, A.H., van de Graaf, S.A., de Vijlder, J.J. and Ris-Stalpers, C. (2001) Heterogeneity in polyadenylation cleavage sites in mammalian mRNA sequences: implications for SAGE analysis. Nucleic Acids Res, 29, 1690–1694.

    Article  CAS  PubMed  Google Scholar 

  11. Chen, F., MacDonald, C.C. and Wilusz, J. (1995) Cleavage site determinants in the mammalian polyadenylation signal. Nucleic Acids Res, 23, 2614–2620.

    Article  CAS  PubMed  Google Scholar 

  12. Yan, J. and Marr, T.G. (2005) Computational analysis of 3′-ends of ESTs shows four classes of alternative polyadenylation in human, mouse, and rat. Genome Res, 15, 369–375.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, H., Lee, J.Y. and Tian, B. (2005) Biased alternative polyadenylation in human tissues. Genome Biol, 6, R100.

    Article  PubMed  Google Scholar 

  14. Edwalds-Gilbert, G., Veraldi, K.L. and Milcarek, C. (1997) Alternative poly(A) site selection in complex transcription units: means to an end? Nucleic Acids Res, 25, 2547–2561.

    Article  CAS  PubMed  Google Scholar 

  15. Houseley, J., LaCava, J. and Tollervey, D. (2006) RNA-quality control by the exosome. Nat Rev Mol Cell Biol, 7, 529–539.

    Article  CAS  PubMed  Google Scholar 

  16. West, S., Gromak, N., Norbury, C.J. and Proudfoot, N.J. (2006) Adenylation and exosome-mediated degradation of cotranscriptionally cleaved pre-messenger RNA in human cells. Mol Cell, 21, 437–443.

    Article  CAS  PubMed  Google Scholar 

  17. Hall-Pogar, T., Zhang, H., Tian, B. and Lutz, C.S. (2005) Alternative polyadenylation of cyclooxygenase-2. Nucleic Acids Res, 33, 2565–2579.

    Article  CAS  PubMed  Google Scholar 

  18. Pan, Z., Zhang, H., Hague, L.K., Lee, J.Y., Lutz, C.S. and Tian, B. (2006) An intronic polyadenylation site in human and mouse CstF-77 genes suggests an evolutionarily conserved regulatory mechanism. Gene, 366, 325–334.

    Article  CAS  PubMed  Google Scholar 

  19. Gautheret, D., Poirot, O., Lopez, F., Audic, S. and Claverie, J.M. (1998) Alternate polyadenylation in human mRNAs: a large-scale analysis by EST clustering. Genome Res, 8, 524–530.

    CAS  PubMed  Google Scholar 

  20. Graber, J.H., Cantor, C.R., Mohr, S.C. and Smith, T.F. (1999) In silico detection of control signals: mRNA 3′-end-processing sequences in diverse species. Proc Natl Acad Sci USA, 96, 14055–14060.

    Article  CAS  PubMed  Google Scholar 

  21. Iseli, C., Stevenson, B.J., de Souza, S.J., Samaia, H.B., Camargo, A.A., Buetow, K.H., Strausberg, R.L., Simpson, A.J., Bucher, P. and Jongeneel, C.V. (2002) Long-range heterogeneity at the 3′ ends of human mRNAs. Genome Res, 12, 1068–1074.

    CAS  PubMed  Google Scholar 

  22. Cheng, J., Kapranov, P., Drenkow, J., Dike, S., Brubaker, S., Patel, S., Long, J., Stern, D., Tammana, H., Helt, G., et al. (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science, 308, 1149–1154.

    Article  CAS  PubMed  Google Scholar 

  23. Chen, J., Sun, M., Lee, S., Zhou, G., Rowley, J.D. and Wang, S.M. (2002) Identifying novel transcripts and novel genes in the human genome by using novel SAGE tags. Proc Natl Acad Sci USA, 99, 12257–12262.

    Article  CAS  PubMed  Google Scholar 

  24. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local alignment search tool. J Mol Biol, 215, 403–410.

    CAS  PubMed  Google Scholar 

  25. Kent, W.J. (2002) BLAT–the BLAST-like alignment tool. Genome Res, 12, 656–664.

    CAS  PubMed  Google Scholar 

  26. Florea, L., Hartzell, G., Zhang, Z., Rubin, G.M. and Miller, W. (1998) A computer program for aligning a cDNA sequence with a genomic DNA sequence. Genome Res, 8, 967–974.

    CAS  PubMed  Google Scholar 

  27. Wheelan, S.J., Church, D.M. and Ostell, J.M. (2001) Spidey: a tool for mRNA-to-genomic alignments. Genome Res, 11, 1952–1957.

    CAS  PubMed  Google Scholar 

  28. Wheeler, D.L., Barrett, T., Benson, D.A., Bryant, S.H., Canese, K., Chetvernin, V., Church, D.M., DiCuccio, M., Edgar, R., Federhen, S., et al. (2006) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res, 34, D173–D180.

    Article  CAS  PubMed  Google Scholar 

  29. Venkataraman, K., Brown, K.M. and Gilmartin, G.M. (2005) Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition. Genes Dev, 19, 1315–1327.

    Article  CAS  PubMed  Google Scholar 

  30. Hu, J., Lutz, C.S., Wilusz, J. and Tian, B. (2005) Bioinformatic identification of candidate cis-regulatory elements involved in human mRNA polyadenylation. RNA, 11, 1485–1493.

    Article  CAS  PubMed  Google Scholar 

  31. Cheng, Y., Miura, R.M. and Tian, B. (2006) Prediction of mRNA polyadenylation sites by support vector machine. Bioinformatics, 22, 2320–2335

    Article  CAS  PubMed  Google Scholar 

  32. Tabaska, J.E. and Zhang, M.Q. (1999) Detection of polyadenylation signals in human DNA sequences. Gene, 231, 77–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Carol S. Lutz and members of B.T. laboratory for helpful discussions. This work was supported by The Foundation of the University of Medicine and Dentistry of New Jersey.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lee, J.Y., Park, J.Y., Tian, B. (2008). Identification of mRNA Polyadenylation Sites in Genomes Using cDNA Sequences, Expressed Sequence Tags, and Trace. In: Wilusz, J. (eds) Post-Transcriptional Gene Regulation. Methods In Molecular Biology™, vol 419. Humana Press. https://doi.org/10.1007/978-1-59745-033-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-033-1_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-783-9

  • Online ISBN: 978-1-59745-033-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics