Skip to main content

Use of Transcriptomic Data to Support Organelle Proteomic Analysis

  • Protocol
Organelle Proteomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 432))

Summary

Genome-wide transcriptional profiling provides a rich source of data for the validation and annotation of organelle proteomic data. Organelle biogenesis is in most cases accompanied by upregulation of genes encoding organelle-specific proteins. Consequently, identification of genes whose expression correlates with organelle assembly leads to a candidate list that can be cross-checked with a preliminary organelle proteome. When proteins are found in the proteome and the corresponding genes are found to have organelle assembly-correlated expression, this greatly increases our confidence that those proteins are true components of the organelle and not contamination. Such an approach can be used to narrow down a preliminary proteomic data set and help us to focus on a smaller sub-set of proteins that are supported by transcriptomic cross-validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Niehrs, C. (2004). Synexpression groups: genetic modules and embryonic development. In Modularity in Development and Evolution, G. Schlosser and G. Wagner, eds. University of Chicago Press, Chicago, 187–201.

    Google Scholar 

  2. Smith, J. J., Marelli, M., Christmas, R. H, Cox, J. S., Chapman, R. E., and Walter, P. (1997). The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. Mol. Biol. Cell 8, 1805–1814.

    CAS  PubMed  Google Scholar 

  3. Smith, J. J., Marelli, M., Christmas, R. H, Vizeacoumar, F. J., Dilworth, D. J., Ideker, T., et al. (2002) Transcriptome profiling to identify genes involved in peroxisome assembly and function. J. Cell Biol. 158, 259–271.

    Article  CAS  PubMed  Google Scholar 

  4. Li, F., Wang, Y., Zeller, K. I., Potter, J. J, Wonsey, D. R., O'Donnell, K. A., et al. (2005) Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol. Cell Biol. 25, 6225–3624.

    Article  CAS  PubMed  Google Scholar 

  5. Keller, L. C., Romijn, E. P., Zamora, I. Yates, J. R., and Marshall, W. F. (2005) Proteomic analysis of isolated Chlamydomonas centrioles reveals orthologs of ciliary disease genes. Curr. Biol. 15, 1090–1098.

    Article  CAS  PubMed  Google Scholar 

  6. Pfannenschmid, F., Wimmer, V. C., Rios, R. M., Geimer, S., Krockel, U., Leiherer, A., et al. (2003) Chlamydomonas DIP13 and human NA14: a new class of proteins associated with microtubule structures is involved in cell division. J. Cell Sci. 116, 1449–1462.

    Article  CAS  PubMed  Google Scholar 

  7. Stolc, V., Samanta, M. P., Tongprasit, W., and Marshall, W. F. (2005). Genome-wide transcriptional analysis of flagellar regeneration in Chlamydomonas reinhardtii identifies orthologs of ciliary disease genes. Proc. Natl. Acad. Sci. U.S.A. 102, 3703–3707.

    Google Scholar 

  8. +, G. J., Agrin, N., Leszyk, J., and Witman, G. B. (2005) Proteomic analysis of a eukaryotic cilium. J. Cell Biol. 170, 103–113.

    Article  CAS  PubMed  Google Scholar 

  9. Nuwaysir, E. F., Huang, W., Albert, T. J., Singh, J., Nuwaysir, K., Pitas, A., et al. (2002) Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. Genome Res. 12, 1749–1755.

    Article  CAS  PubMed  Google Scholar 

  10. Lefebvre, P. A., Silflow, C. D., Wieben, E. D., and Rosenbaum, J. L. (1980) Increased levels of mRNAs for tubulin and other flagellar proteins after amputation or shortening of Chlamydomonas flagella. Cell 20, 469–477.

    Article  CAS  PubMed  Google Scholar 

  11. Shapiro, J., Ingram, J., and Johnson, K. A. (2005) Characterization of a molecular chaperone present in the eukaryotic flagellum. Euk. Cell. 4, 1591–1594.

    Article  CAS  Google Scholar 

  12. Lefebvre, P. A., Barsel, S. E., and Wexler, D. E. (1988) Isolation and characterization of Chlamydomonas reinhardtii mutants with defects in the induction of protein synthesis after deflagellation. J. Protozool. 35, 559–564.

    CAS  PubMed  Google Scholar 

  13. Larkin, J. C., Lefebvre, P. A., and Silflow, C. D. (1989) A gene essential for viability and flagellar regeneration maps to the uni linkage group of Chlamydomonas reinhardtii. Curr. Genet. 15, 377–384.

    Article  CAS  PubMed  Google Scholar 

  14. Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D., Brown, P. O., et al. (1998) The transcriptional program of sporulation in budding yeast. Science 282, 699–705.

    Article  CAS  PubMed  Google Scholar 

  15. Schultz, N., Hamra, F. K., and Garbers, D. L. (2003) A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc. Natl. Acad. Sci. U.S.A. 100, 12201–12206.

    Article  CAS  PubMed  Google Scholar 

  16. Divina, P., Vlcek, C., Strnad, P, Paces, V, Forejt, J. (2005) Global transcriptomic analysis of the C57BL/6J mouse testis by SAGE: evidence for nonrandom gene order. BMC Genomics 6, 29.

    Article  PubMed  Google Scholar 

  17. Lorenz, P., Ruschpler, P., Koczan, D, Stiehl, P, and Thiesen, H. J. (2002) From transcriptome to proteome: differentially expressed proteins identified in synovial tissue of patients suffering from rheumatoid arthritis and osteoarthritis by an initial screen with a panel of 791 antibodies. Proteomics 3, 991–1002.

    Article  Google Scholar 

  18. Conrads, K. A., Yi, M., Simpson, K. A., Lucas, D. A., Camalier, C. E., Yu, L. R., et al. (2005) A combined proteomic and microarray investigation of inorganic phosphate induced pre-osteoblast cells. Mol. Cell Proteomics 4, 1284–1296.

    Article  CAS  PubMed  Google Scholar 

  19. Efimenko, E., Bubb, K., Mak, H. Y., Holzman, T, Leroux, M. R., Ruvkun, G., et al. (2005). Analysis of xbx genes in C. elegans. Development 132, 1923–1934.

    Article  CAS  PubMed  Google Scholar 

  20. Li, J. B., Gerdes, J. M, Haycraft, C. J., Fan, Y., Teslovich, T. M., May-Simera, H., et al. (2004) Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 117, 541–552.

    Article  CAS  PubMed  Google Scholar 

  21. Avidor-Reiss, T., Maer, A. M., Koundakjian, E., Polyanovsky, A, Keil, T., hboxSubramanian, S., et al. (2004) Decoding cilia function: defining specialized genes required for compartmentalized cilia biogenesis. Cell 117, 527–539.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Marshall, W.F. (2008). Use of Transcriptomic Data to Support Organelle Proteomic Analysis. In: Pflieger, D., Rossier, J. (eds) Organelle Proteomics. Methods in Molecular Biology™, vol 432. Humana Press. https://doi.org/10.1007/978-1-59745-028-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-028-7_27

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-779-2

  • Online ISBN: 978-1-59745-028-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics