Skip to main content

Identifying Bona Fide Components of an Organelle by Isotope-Coded Labeling of Subcellular Fractions

An Example in Peroxisomes

  • Protocol
Book cover Organelle Proteomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 432))

Summary

Organelles are biochemically distinct subcellular compartments that perform specific functions within a cell. These roles are regulated by the complement of proteins associated with each organelle. Thus, a comprehensive understanding of an organelle’s proteome is necessary to elucidate the diverse roles of each organelle. Mass spectrometry combined with biochemical fractionation methods has enabled the proteomic characterization of several organelles. However, due to the poorly quantitative nature of mass spectrometry and the inability to generate pure fractions of an organelle, distinguishing bona fide components of the organelle from contaminants of the fraction is a significant challenge. We have addressed this limitation by adopting quantitative mass spectrometric approaches to identify proteins that enrich in a purified fraction of organelles relative to a crude or contaminating fraction. The methods for the analyses of the yeast peroxisome are described in detail; however, these concepts are generally applicable to the study of other organelles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aebersold, R. and Mann, M. (2003) Mass spectrometry-based proteomics. Nature 422, 198–207.

    Article  CAS  PubMed  Google Scholar 

  2. Brunet, S., Thibault, P., Gagnon, E., Kearney, P., Bergeron, J. J., and Desjardins, M. (2003) Organelle proteomics: looking at less to see more. Trends Cell Biol. 13, 629–638.

    Article  CAS  PubMed  Google Scholar 

  3. de Duve, C. (1992) Exploring cells with a centrifuge. In Nobel Lectures in Physiology 1971–1980 (Lindsten, J., ed.), World Scientific Publishing Co., London, pp. 152–172.

    Google Scholar 

  4. Marelli, M., Smith, J. J., Jung, S., Yi, E., Nesvizhskii, A. I., Christmas, R. H., et al. (2004) Quantitative mass spectrometry reveals a role for the GTPase Rho1p in actin organization on the peroxisome membrane. J. Cell Biol. 167, 1099–1112.

    Article  Google Scholar 

  5. Smith, J. J., Marelli, M., Christmas, R. H., Vizeacoumar, F. J., Dilworth, D. J., Ideker, T., et al. (2002) Transcriptome profiling to identify genes involved in peroxisome assembly and function. J. Cell Biol. 158, 259–271.

    Article  CAS  PubMed  Google Scholar 

  6. Eng, J. K., McCormack, A. L., and Yates, J. R. III. (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989.

    Article  CAS  Google Scholar 

  7. Han, D. K., Eng, J., Zhou, H., and Aebersold, R. (2001) Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat. Biotechnol. 19, 946–951.

    Article  CAS  PubMed  Google Scholar 

  8. Li, X. J., Zhang, H., Ranish, J. A., and Aebersold, R. (2003) Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry. Anal. Chem. 75, 6648–6657.

    Article  CAS  PubMed  Google Scholar 

  9. Keller, A., Nesvizhskii, A. I., Kolker, E., and Aebersold, R. (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392.

    Article  CAS  PubMed  Google Scholar 

  10. Nesvizhskii, A. I., Keller, A., Kolker, E., and Aebersold, R. (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658.

    Article  CAS  PubMed  Google Scholar 

  11. Lee, R. T. (2000) Use of microarrays to identify targets in cardiovascular disease. Drug News Perspect. 13, 403–406.

    Article  CAS  PubMed  Google Scholar 

  12. Pan, W., Lin, J., and Le, C. T. (2002) How many replicates of arrays are required to detect gene expression changes in microarray experiments? A mixture model approach. Genome Biol. 3, 22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Marelli, M., Nesvizhskii, A.I., Aitchison, J.D. (2008). Identifying Bona Fide Components of an Organelle by Isotope-Coded Labeling of Subcellular Fractions. In: Pflieger, D., Rossier, J. (eds) Organelle Proteomics. Methods in Molecular Biology™, vol 432. Humana Press. https://doi.org/10.1007/978-1-59745-028-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-028-7_24

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-779-2

  • Online ISBN: 978-1-59745-028-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics