Skip to main content

Isolation and Culture of Mouse Pancreatic Islets for Ex Vivo Imaging Studies with Trappable or Recombinant Fluorescent Probes

  • Protocol
  • First Online:
Mouse Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 633))

Abstract

The endocrine pancreas contains small clusters of 1,000–2,000 neuroendocrine cells termed islets of Langerhans. By secreting insulin, glucagon, or other hormones as circumstances dictate, islets play a central role in the control of glucose homeostasis in mammals. Islets are dispersed throughout the exocrine tissue and comprise only 1–2% of the volume of the whole organ; human pancreas contains about 106 islets whereas rodents have approximately 2 × 103 islets. The isolation of islets from the exocrine tissue usually begins with digestion of the pancreas with collagenase. Collagenase-containing medium is either injected into the pancreatic duct, and the organ left to digest in situ, or added after isolation of the pancreas and its dissection into small pieces ex vivo. Islets can then be separated from the exocrine tissue by gradient density or by handpicking. The islets obtained can either be used intact, for example, to measure insulin or glucagon secretion or be dispersed into single cells with a Ca2+-free medium or with trypsin/dispase. The latter facilitates the introduction of recombinant or trappable probes and microimaging studies of, for example, changes in cytosolic-free Ca2+ concentration or the dynamics of individual organelles or proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahren, B. (2000) Autonomic regulation of islet hormone secretion – implications for health and disease. Diabetologia 43, 393–410.

    Article  CAS  PubMed  Google Scholar 

  2. Stagner, J. I., Samols, E., and Bonner-Weir, S. (1988) Beta—alpha—delta pancreatic islet cellular perfusion in dogs. Diabetes 37, 1715–1721.

    Article  CAS  PubMed  Google Scholar 

  3. Leclerc, I., Woltersdorf, W. W., da Sylva Xavier, G., Rowe, R. L., Cross, S. E., Korbutt, G. S., Rajotte, R. V., Smith, R., and Rutter, G. A. (2004) Metformin, but not leptin, regulates AMP-activated protein kinase in pancreatic islets: impact on glucose-stimulated insulin secretion. Am. J. Physiol. Endocrinol. Metab. 286, E1023–E1031.

    Article  CAS  PubMed  Google Scholar 

  4. Ravier, M. A., Gilon, P., and Henquin, J. C. (1999) Oscillations of insulin secretion can be triggered by imposed oscillations of cytoplasmic Ca2+ or metabolism in normal mouse islets. Diabetes 48, 2374–2382.

    Article  CAS  PubMed  Google Scholar 

  5. Ravier, M. A., and Rutter, G. A. (2005) Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic alpha-cells. Diabetes 54, 1789–1797.

    Article  CAS  PubMed  Google Scholar 

  6. Gotoh, M., Maki, T., Kiyoizumi, T., Satomi, S., and Monaco, A. P. (1985) An improved method for isolation of mouse pancreatic islets. Transplantation 40, 437–438.

    Article  CAS  PubMed  Google Scholar 

  7. Gotoh, M., Maki, T., Satomi, S., Porter, J., Bonner-Weir, S., O’Hara, C. J., and Monaco, A. P. (1987) Reproducible high yield of rat islets by stationary in vitro digestion following pancreatic ductal or portal venous collagenase injection. Transplantation 43, 725–730.

    Article  CAS  PubMed  Google Scholar 

  8. Wollheim, C. B., Meda, P., and Halban, P. A. (1990) Isolation of pancreatic islets and primary culture of the intact microorgans or of dispersed islet cells. Methods Enzymol. 192, 188–223.

    Article  CAS  PubMed  Google Scholar 

  9. Ainscow, E. K., and Rutter, G. A. (2001) Mitochondrial priming modifies Ca2+ oscillations and insulin secretion in pancreatic islets. Biochem. J. 353, 175–180.

    Article  CAS  PubMed  Google Scholar 

  10. Kennedy, H. J., Pouli, A. E., Ainscow, E. K., Jouaville, L. S., Rizzuto, R., and Rutter, G. A. (1999) Glucose generates sub-plasma membrane ATP microdomains in single islet beta-cells. Potential role for strategically located mitochondria. J. Biol. Chem. 274, 13281–13291.

    Article  CAS  PubMed  Google Scholar 

  11. Rutter, G. A., Theler, J. M., Murgia, M., Wollheim, C. B., Pozzan, T., and Rizzuto, R. (1993) Stimulated Ca2+ influx raises mitochondrial free Ca2+ to supramicromolar levels in a pancreatic beta-cell line. Possible role in glucose and agonist-induced insulin secretion. J. Biol. Chem. 268, 22385–22390.

    CAS  PubMed  Google Scholar 

  12. Pinton, P., Tsuboi, T., Ainscow, E. K., Pozzan, T., Rizzuto, R., and Rutter, G. A. (2002) Dynamics of glucose-induced membrane recruitment of protein kinase C beta II in living pancreatic islet beta-cells. J. Biol. Chem. 277, 37702–37710.

    Article  CAS  PubMed  Google Scholar 

  13. Pouli, A. E., Emmanouilidou, E., Zhao, C., Wasmeier, C., Hutton, J. C., and Rutter, G. A. (1998) Secretory-granule dynamics visualized in vivo with a phogrin-green fluorescent protein chimaera. Biochem. J. 333 (Pt 1), 193–199.

    CAS  PubMed  Google Scholar 

  14. Tsuboi, T., Zhao, C., Terakawa, S., and Rutter, G. A. (2000) Simultaneous evanescent wave imaging of insulin vesicle membrane and cargo during a single exocytotic event. Curr. Biol. 10, 1307–1310.

    Article  CAS  PubMed  Google Scholar 

  15. Tsuboi, T., Ravier, M. A., Parton, L. E., and Rutter, G. A. (2006) Sustained exposure to high glucose concentrations modifies glucose signaling and the mechanics of secretory vesicle fusion in primary rat pancreatic beta-cells. Diabetes 55, 1057–1065.

    Article  CAS  PubMed  Google Scholar 

  16. Riboulet-Chavey, A., Diraison, F., Siew, L. K., Wong, F. S., and Rutter, G. A. (2008) Inhibition of AMP-activated protein kinase protects pancreatic beta-cells from cytokine-mediated apoptosis and CD8+ T-cell-induced cytotoxicity. Diabetes 57, 415–423.

    Article  CAS  PubMed  Google Scholar 

  17. Jonas, J. C., Gilon, P., and Henquin, J. C. (1998) Temporal and quantitative correlations between insulin secretion and stably elevated or oscillatory cytoplasmic Ca2+ in mouse pancreatic beta-cells. Diabetes 47, 1266–1273.

    Article  CAS  PubMed  Google Scholar 

  18. Salvalaggio, P. R., Deng, S., Ariyan, C. E., Millet, I., Zawalich, W. S., Basadonna, G. P., and Rothstein, D. M. (2002) Islet filtration: a simple and rapid new purification procedure that avoids ficoll and improves islet mass and function. Transplantation 74, 877–879.

    Article  CAS  PubMed  Google Scholar 

  19. Diraison, F., Parton, L., Ferre, P., Foufelle, F., Briscoe, C. P., Leclerc, I., and Rutter, G. A. (2004) Over-expression of sterol-regulatory-element-binding protein-1c (SREBP1c) in rat pancreatic islets induces lipogenesis and decreases glucose-stimulated insulin release: modulation by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR). Biochem. J. 378, 769–778.

    Article  CAS  PubMed  Google Scholar 

  20. Josefsen, K., Stenvang, J. P., Kindmark, H., Berggren, P. O., Horn, T., Kjaer, T., and Buschard, K. (1996) Fluorescence-activated cell sorted rat islet cells and studies of the insulin secretory process. J. Endocrinol. 149, 145–154.

    Article  CAS  PubMed  Google Scholar 

  21. He, T. C., Zhou, S., da Costa, L. T., Yu, J., Kinzler, K. W., and Vogelstein, B. (1998) A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95, 2509–2514.

    Article  CAS  PubMed  Google Scholar 

  22. Liu, Y. J., Vieira, E., and Gylfe, E. (2004) A store-operated mechanism determines the activity of the electrically excitable glucagon-secreting pancreatic alpha-cell. Cell Calcium 35, 357–365.

    Article  CAS  PubMed  Google Scholar 

  23. Tsien, R. Y. (1992) Intracellular signal transduction in four dimensions: from molecular design to physiology. Am. J. Physiol. 263, C723–C728.

    CAS  PubMed  Google Scholar 

  24. Axelrod, D. (1981) Cell-substrate contacts illuminated by total internal reflection fluorescence. J. Cell Biol. 89, 141–145.

    Article  CAS  PubMed  Google Scholar 

  25. Ravier, M. A., Tsuboi, T., and Rutter, G. A. (2008) Imaging a target of Ca2+ signalling: dense core granule exocytosis viewed by total internal reflection fluorescence microscopy. Methods 46, 233–238.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ravier, M.A., Rutter, G.A. (2010). Isolation and Culture of Mouse Pancreatic Islets for Ex Vivo Imaging Studies with Trappable or Recombinant Fluorescent Probes. In: Ward, A., Tosh, D. (eds) Mouse Cell Culture. Methods in Molecular Biology, vol 633. Humana Press. https://doi.org/10.1007/978-1-59745-019-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-019-5_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-772-3

  • Online ISBN: 978-1-59745-019-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics