Skip to main content

Three-Dimensional Reconstruction of Single Particles in Electron Microscopy

Image Processing

  • Protocol
Cell Imaging Techniques

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 319))

Abstract

Three-dimensional electron microscopy of single macromolecular assemblies has made large strides forward over the last decade. A large number of image processing techniques have been developed and many have found general distribution. For the proper usage of the wide range of available techniques, a clear concept of all processing steps is essential. This chapter provides step-by-step instruction for the three-dimensional reconstruction of an unknown macromolecule. Where possible, the limitations of the techniques are explained. The chapter attempts to be sufficiently general such so as not to adhere to a single image processing system. Described are alignment techniques for two and three dimensions, classification procedures, and the usage of three-dimensional reconstruction algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frank, J. (1996) Three-Dimensional Electron Microscopy of Macromolecular Assemblies, Academic, San Diego, CA.

    Google Scholar 

  2. Hoppe, W., Langer, R., Knech, G., and Poppe, C. (1968) Proteinkristallstrukturanalyse mit Elektronenstrahlen. Naturwissenschaften 55, 333.

    Article  PubMed  CAS  Google Scholar 

  3. DeRosier, D. J. and Klug, A. (1968) Reconstruction of three dimensional structures from electron micrographs. Nature 217, 130.

    Article  Google Scholar 

  4. Crowther R. A. DeRosier D. J. and Klug A. 1970 The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. London Ser. A 317 319–340.

    Article  Google Scholar 

  5. Radon, J. (1917) Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber. Verh. König. Sächs. Ges. Wiss. Leipzig, Math. Phys. Kl. 69, 262–267.

    Google Scholar 

  6. Deans, S. R. (1983) The Radon Transform and Some of Its Applications. Wiley, New York.

    Google Scholar 

  7. van Heel, M. (1987) Angular reconstitution: a posteriori assignment of projection directions for 3D reconstruction. Ultramicroscopy 21, 111–124.

    Article  PubMed  Google Scholar 

  8. Radermacher, M. (1994) Three-dimensional reconstruction from random projections: orientational alignment via Radon transforms. Ultramicroscopy 53, 21–36.

    Article  Google Scholar 

  9. Serysheva, I., Orlova, E., Chiu, W., Sherman, M., Hamilton, S., and van Heel, M. (1995) Electron cryomicroscopy and angular reconstitution used to visualize the skeletal muscle calcium release channel. Nature Struct. Biol. 2, 18–24.

    Article  PubMed  CAS  Google Scholar 

  10. Radermacher, M. (1997) Radon transform techniques for alignment and 3D reconstruction from random projections. Scan. Microsc. 11, 171–177.

    Google Scholar 

  11. Lanzavecchia, S., Bellon, P. L., and Radermacher, M. (1999) Fast and accurate three-dimensional reconstruction from projections with random orientations via Radon transforms. J. Struct. Biol. 128, 152–164.

    Article  PubMed  Google Scholar 

  12. Hoppe, W., Schramm, H. J., Sturm, M., Hunsmann, N., and Gaβmann, J. (1976) Three-dimensional electron microscopy of individual biological objects. I. Methods. Z. Naturforsch. 31a, 645–655.

    Google Scholar 

  13. Hoppe, W., Schramm, H. J., Sturm, M., Hunsmann, N., and Gaβmann, J. (1976) Three-dimensional electron microscopy of individual biological objects. II. Test calculations. Z. Naturforsch. 31a, 1370.

    CAS  Google Scholar 

  14. Hoppe, W., Schramm, H. J., Sturm, M., Hunsmann, N., and Gaβmann, J. (1976) Three-dimensional electron microscopy of individual biological objects. III. Experimental results on yeast fatty acid synthetase. Z. Naturforsch. 31a.

    Google Scholar 

  15. Frank, J. (ed.) (1992) Electron Tomography, Plenum, New York.

    Google Scholar 

  16. Radermacher, M. (1988) Three-dimensional reconstruction of single particles from random and nonrandom tilt series. J. Electron. Microsc. Tech. 9, 359–394.

    Article  PubMed  CAS  Google Scholar 

  17. Radermacher, M., Wagenknecht, T., Verschoor, A., and Frank, J. (1986) A new 3-dimensional reconstruction scheme applied to the 50s ribosomal subunit of E. coli. J. Microsc. 141, Rp1–Rp2.

    PubMed  CAS  Google Scholar 

  18. Radermacher, M., Wagenknecht, T., Verschoor, A., and Frank, J. (1987) Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J. Microsc. 146, 113–136.

    PubMed  CAS  Google Scholar 

  19. Goncharov, A. B. (1987) Methods of integral geometry and determination of mutual orientations of arbitrarily arranged in the plane identical particles from their projections onto the line. Dokl. Acad. Sci. USSR 293, 355–358 (in Russian).

    Google Scholar 

  20. Goncharov, A. B. and Gelfand, M. S. (1988) Determination of mutual orientation of identical particles from their projections by the moments method. Ultramicroscopy 25, 317.

    Article  Google Scholar 

  21. New, P. F., Scott, W. R., Schnur, J. A., Davis, K. R., and Taveras, J. M. (1974) Computerized axial tomography with the EMI scanner. Radiology 110, 109–123.

    PubMed  CAS  Google Scholar 

  22. Edholm, P. (1960). The tomogram: its formation and content. Acta Radiol. 193(Suppl.), 4–109.

    Google Scholar 

  23. Cormack, A. M. (1964) Representation of a function by its line integrals, with some radiological applications II. J. Appl. Phys. 35, 2908–2913.

    Article  Google Scholar 

  24. Cormack, A. M. (1963) Representation of a function by its line integrals, with some radiological applications. J. Appl. Phys. 34, 2722–2727.

    Article  Google Scholar 

  25. Gilbert, P. (1972) Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36, 105–107.

    Article  PubMed  CAS  Google Scholar 

  26. Lewitt, R. M. and Bates, R. H. T. (1978) Image reconstruction from projections: I. Theoretical considerations. Optik 50, 19–33.

    Google Scholar 

  27. Lewitt, R. M., Bates, R. H. T., and Peters, T. M. (1978) Image reconstruction from projections: II: Modified back-projection methods. Optik 50, 85–109.

    Google Scholar 

  28. Lewitt, R. M. and Bates, R. H. T. (1978) Image reconstruction from projections: III: Projection completion methods (theory). Optik 50, 189–204.

    Google Scholar 

  29. Lewitt, R. M. and Bates, R. H. T. (1978) Image reconstruction from projections: IV: Projection completion methods (computational examples). Optik 50, 269–278.

    Google Scholar 

  30. Bates, R. H. T. and Heffernan, P. B. (1980) Image reconstruction from projections V: Blurring due to object movement. Optik 56, 101–112.

    Google Scholar 

  31. Hefferman, P. B. and Bates, R. H. T. (1982) Image reconstruction from projections. VI: Comparison of interpolation methods. Optik 60, 129–142.

    Google Scholar 

  32. Garden, K. L. and Bates, R. H. T. (1984) Image reconstruction from projections VII: Interactive reconstruction of piecewise constant images from few projections. Optik 68, 161–172.

    Google Scholar 

  33. Cormack, A. M. and Koehler, A. M. (1976) Quantitative proton tomography: preliminary experiments. Phys. Med. Biol. 21, 560–569.

    Article  PubMed  CAS  Google Scholar 

  34. Cormack, A. M., Koehler, A. M., Brooks, R. A., and Dichiro, G. (1977) Proton tomography. J. Computer-Assist. Tomogr. 1, 265–265.

    Article  Google Scholar 

  35. Cormack, A. M. and Laureate, N. (1980) Physics of computerized-tomography. Med. Phys. 7, 445–445.

    Article  Google Scholar 

  36. Cormack, A. M. (1980) Early Two-dimensional reconstruction (CT scanning) and recent topics stemming from It-Nobel Lecture, December 8, 1979. J. Computer Assist. Tomogr. 4, 658–664.

    Article  CAS  Google Scholar 

  37. Cormack, A. M. (1992) 75 Years of Radon-transform. J. Computer. Assist. Tomogr. 16, 673–673.

    Article  CAS  Google Scholar 

  38. Budinger, T. F., Gullberg, G. T., and Huesman, R. H. (1979) Emission computed tomography, in Image Reconstruction from Projections (Herman G. T., ed.), Topics in Applied Physics Vol. 32, Springer-Verlag, Berlin, p. 147–246.

    Google Scholar 

  39. Colsher, J. G. (1980) Fully Three-dimensional positron emission tomography. Phys. Med. Biol. 25, 103–115.

    Article  PubMed  CAS  Google Scholar 

  40. Colsher, J. G. (1977) Iterative three-diminsional image reconstruction from tomographic projections. Comput. Graphics Image Process. 6, 513–537.

    Article  Google Scholar 

  41. Penczek, P., Marko, M., Buttle, K., and Frank, J. (1995) Double-tilt electron tomography. Ultramicroscopy 60, 393–410.

    Article  PubMed  CAS  Google Scholar 

  42. Radermacher, M. and Hoppe, W. (1978) 3-D reconstruction from conically tilted projections. Proceedings of the 9th International Congress on Electron Microscopy, Vol. 1, pp. 218–219.

    Google Scholar 

  43. Radermacher, M. and Hoppe, W. (1980) Properties of 3-D reconstruction from projections by conical tilting compared to single axis tilting compared to single axis tilting. Proceedings of the 7th European Congress on Electron Microscopy, Vol. 1, pp. 132–133.

    Google Scholar 

  44. Radermacher, M., Ruiz, T., Wieczorek, H., and Grüber, G. (2001) The structure of the V1-ATPase determined by three-dimensional electron microscopy of single particles. J. Struct. Biol. 135, 26–37.

    Article  PubMed  CAS  Google Scholar 

  45. Frank, J., Radermacher, M., Penzcek, P., et al. (1996) SPIDER and WEB: Processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199.

    Article  PubMed  CAS  Google Scholar 

  46. Langer, R., Frank, J., Feltynowsky, A., and Hoppe, W. (1970) Anwendung des Bilddifferenzverfahrens auf die Untersuchung von Strukturänderungen dünner Kohlefolien bei Elektronenbestrahlung. Ber. Bunsenges. Phys. Chem. 74, 1120–1126.

    CAS  Google Scholar 

  47. Frank, J., Goldfarb, W., Eisenberg, D., and Baker, T. S. (1978) Reconstruction of glutamine synthetase using computer averaging. Ultramicroscopy 3, 283–290.

    Article  PubMed  CAS  Google Scholar 

  48. Steinkilberg, M. and Schramm, H. J. (1980) Eine verbesserte Drehkorrelationsmethode für die Strukturbestimmung biologischer Makromolekle durch Mittelung elektronenmikroskopischer Bilder. Hoppe-Seylers Zeitschrift für Physiol. Chem. 361, 1363–1369.

    CAS  Google Scholar 

  49. Radermacher, M. (2001) Appendix: simultaneous rotational and translational alignment. J. Struct. Biol. 135, 35–37.

    Article  Google Scholar 

  50. Marco, S., Chagoyen, M., de la Fraga, L. G., Carazo, J. M., and Carrascosa, J. L. (1996) A variant to the random approximation of the reference-free alignment algorithm. Ultramicroscopy 66, 5–10.

    Article  CAS  Google Scholar 

  51. Marabini, R. and Carazo, J. M. (1994) Pattern-recognition and classification of images of biological macromolecules using artificial neural networks. Biophys. J. 66, 1804–1814.

    Article  PubMed  CAS  Google Scholar 

  52. van Heel, M. and Frank, J. (1981) Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6, 187–194.

    PubMed  Google Scholar 

  53. Frank, J. and van Heel, M. (1982) Correspondence analysis of aligned images of biological particles. J. Mol. Biol. 161, 134–137.

    Article  PubMed  CAS  Google Scholar 

  54. Diday, E. (1971) La methode de nuees dynamiques. Rev. Statist. Appli. 19, 19–34.

    Google Scholar 

  55. Guckenberger, R. (1982) Determination of a common origin in the micrographs of tilt series in three-dimensional electron microscopy. Ultramicroscopy 9, 167–174.

    Article  Google Scholar 

  56. Gilbert, P. F. (1972) The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. II. Direct methods. Proc. R. Soc. London B: Biol. Sci. 182, 89–102.

    Article  CAS  Google Scholar 

  57. Radermacher, M. (1992) Weighted backprojection methods, in Electron tomography (Frank, J., ed.), Plenum, New York, pp. 91–116.

    Google Scholar 

  58. Levi, A. and Stark, H. (1983) Signal restoration from phase by projections onto convex sets. J. Opt. Soc. Am. 73, 810–822.

    Article  Google Scholar 

  59. Levi, A. and Stark, H. (1984) Image restoration by the method of generalized projections with application to restoration from magnitude. J. Opt. Soc. Am. A1, 932–943.

    Article  Google Scholar 

  60. Carazo, J. M. and Carrascosa, J. L. (1987) Restoration of direct Fourier three-dimensional reconstructions of crystalline specimens by the method of convex projections. J. Microsc. 145, 159–177.

    PubMed  CAS  Google Scholar 

  61. Ruiz, T., Kopperschläger, G., and Radermacher, M. (2001) The first three-dimensional structure of phosphofructokinase from Saccharomyces cerevisiae determined by electron microscopy of single particles. J. Struct. Biol. 136, 167–180.

    Article  PubMed  CAS  Google Scholar 

  62. Saxton,W. O. and Baumeister, W. (1982) The correlation averaging of a regularly arranged bacterial cell envelope protein. J. Micros. 127, 127–138.

    CAS  Google Scholar 

  63. van Heel, M., Keegstra, W., Schutter, W., and van Bruggen, E. J. F. (1982) Arthropod hemocyanin structures studied by image analysis, in Life Chemistry Reports, Suppl. 1, The Structure and Function of Invertebrate Respiratory Proteins. Embo Workshop, Leeds (Wood, E. J., ed.), pp. 69–73.

    Google Scholar 

  64. Crowther, R. A. (1971) Procedures for three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs. Philos. Trans. R. Soc. London 261, 221–230.

    Article  CAS  Google Scholar 

  65. Frank, J., Verschoor, A., and Boublik, M. (1981) Computer averaging of electron micrographs of 40S ribosomal subunits. Science 214, 1353–1355.

    Article  PubMed  CAS  Google Scholar 

  66. Thon, F. (1966) Zur Defukussierungsabhängigkeit des Phasenkontrastes bei der elektronenmikroskopischen Abbildung. Z. Naturforsch. 21a, 476–478.

    Google Scholar 

  67. Frank, J., Bussler, P., Langer, R., and Hoppe, W. (1970) Einige Erfahrungen mit der rechnerischen Analyse und Synthese von Elektronenmikroskopischen Bildern hoher Auflösung. Bericht. Bunsen-Gesellsch. Phys. Chem. 74, 1105–11115.

    CAS  Google Scholar 

  68. Typke, D. and Radermacher, M. (1982) Determination of the phase of complex atomic scattering amplitudes from light optical diffractograms of electron microscope images. Ultramicroscopy 9, 131–138.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Radermacher, M., Ruiz, T. (2006). Three-Dimensional Reconstruction of Single Particles in Electron Microscopy. In: Taatjes, D.J., Mossman, B.T. (eds) Cell Imaging Techniques. Methods in Molecular Biology™, vol 319. Humana Press. https://doi.org/10.1007/978-1-59259-993-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-993-6_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-157-8

  • Online ISBN: 978-1-59259-993-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics