Skip to main content

Imaging and Probing Cell Mechanical Properties With the Atomic Force Microscope

  • Protocol
Book cover Cell Imaging Techniques

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 319))

Abstract

This chapter describes the use of the atomic force microscope (AFM) to probe and map out regional variations in apparent elastic properties of living cells. The importance of mechanics in the field of cell biology is becoming more widely appreciated, and the AFM has unique advantages for cell mechanics applications. However, care must be taken in the acquisition, analysis, and interpretation of AFM indentation data. To help make this powerful technique accessible to a broad range of investigators, detailed procedures are provided for all stages of the AFM experiment from sample preparation through data analysis and visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu, C., Bao, G., and Wang, N. (2000) Cell mechanics: Mechanical response, cell adhesion, and molecular deformation. Annu. Rev. Biomed. Eng. 2, 189–226.

    Article  PubMed  CAS  Google Scholar 

  2. Elson, E. L. (1988) Cellular mechanics as an indicator of cytoskeletal structure and function. Annu. Rev. Biophys. Biophys. Chem. 17, 397–430.

    Article  PubMed  CAS  Google Scholar 

  3. Pourati, J., Maniotis, A., Spiegel, D., et al. (1998) Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells? Am. J. Physiol. 247, C1283–C1289.

    Google Scholar 

  4. Rotsch, C. and Radmacher, M. (2000) Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys. J. 78, 520–535.

    Article  PubMed  CAS  Google Scholar 

  5. Trickey, W. R., Vail, T. P., and Guilak, F. (2004) The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes. J. Orthop. Res. 22, 131–139.

    Article  PubMed  Google Scholar 

  6. Heidemann, S. R., Kaech, S., Buxbaum, R. E., and Matus, A. (1999) Direct observations of the mechanical behaviors of the cytoskeleton in living fibroblasts. J. Cell Biol. 145, 109–122.

    Article  PubMed  CAS  Google Scholar 

  7. Sato, M., Nagayama, K., Kataoka, N., Sasaki, M., and Hane, K. (2000) Local mechanical properties measured by atomic force microscopy for cultured bovine endothelial cells exposed to shear stress. J. Biomech. 33, 127–135.

    Article  PubMed  CAS  Google Scholar 

  8. Costa, K. D., Lee, E. J., and Holmes, J. W. (2003) Creating alignment and anisotropy in engineered heart tissue: role of boundary conditions in a model three-dimensional culture system. Tissue Eng. 9, 567–577.

    Article  PubMed  Google Scholar 

  9. Wakatsuki, T. and Elson, E. L. (2003) Reciprocal interactions between cells and extracellular matrix during remodeling of tissue constructs. Biophys. Chem. 100, 593–605.

    Article  PubMed  CAS  Google Scholar 

  10. Swartz, M. A., Tschumperlin, D. J., Kamm, R. D., and Drazen, J. M. (2001) Mechanical stress is communicated between different cell types to elicit matrix remodeling. Proc. Natl. Acad. Sci. USA 98, 6180–6185.

    Article  PubMed  CAS  Google Scholar 

  11. Tamariz, E. and Grinnell, F. (2002) Modulation of fibroblast morphology and adhesion during collagen matrix remodeling. Mol. Biol. Cell 13, 3915–3929.

    Article  PubMed  CAS  Google Scholar 

  12. Harris, A. K. (1994) Multicellular mechanics in the creation of anatomical structures, in Biomechanics of Active Movement and Division of Cells, Volume H-84 (Akkas, N., ed.), Springer-Verlag, Berlin, pp. 87–129.

    Google Scholar 

  13. Costa, K. D. (2004) Single-cell elastography: probing for disease with the atomic force microscope. Dis. Markers 19, 139–154.

    Google Scholar 

  14. Hochmuth, R. M. and Waugh, R. E. (1987) Erythrocyte membrane elasticity and viscosity. Annu. Rev. Physiol. 49, 209–219.

    Article  PubMed  CAS  Google Scholar 

  15. Schmid-Schonbein, G. W., Sung, K.-L. P., Tozeren, H., Skalak, R., and Chien, S. (1981) Passive mechanical properties of human leukocytes. Biophys. J. 36, 243–256.

    Article  PubMed  CAS  Google Scholar 

  16. Evans, E. and Yeung, A. (1989) Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J. 56, 151–160.

    Article  PubMed  CAS  Google Scholar 

  17. Jones, W. R., Ting-Beall, H. P., Lee, G. M., Kelley, S. S., Hochmuth, R. M., and Guilak, F. (1999) Alterations in the Young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J. Biomech. 32, 119–127.

    Article  PubMed  CAS  Google Scholar 

  18. Miyazaki, H., Hasegawa, Y., and Hayashi, K. (2000) A newly designed tensile tester for cells and its application to fibroblasts. J. Biomech. 33, 97–104.

    Article  PubMed  CAS  Google Scholar 

  19. Wang, N., Butler, J. P., and Ingber, D. E. (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127.

    Article  PubMed  CAS  Google Scholar 

  20. Yamada, S., Wirtz, D., and Kuo, S. C. (2000) Mechanics of living cells measured by laser tracking microrheology. Biophys. J. 78, 1736–1747.

    Article  PubMed  CAS  Google Scholar 

  21. Alenghat, F. J., Fabry, B., Tsai, K. Y., Goldmann, W. H., and Ingber, D. E. (2000) Analysis of cell mechanics in single vinculin-deficient cells using a magnetic tweezer. Biochem. Biophys. Res. Commun. 277, 93–99.

    Article  PubMed  CAS  Google Scholar 

  22. Guck, J., Ananthakrishnan, R., Mahmood, H., Moon, T. J., Cunningham, C. C., and Kas, J. (2001) The optical stretcher: a novel laser tool to micromanipulate cells. Biophys. J. 81, 767–784.

    Article  PubMed  CAS  Google Scholar 

  23. Petersen, N. O., McConnaughey, W. B., and Elson, E. L. (1982) Dependence of locally measured cellular deformability on position on the cell, temperature, and cytochalasin B. Proc. Natl. Acad. Sci. USA 79, 5327–5331.

    Article  PubMed  CAS  Google Scholar 

  24. Felder, S. and Elson, E. L. (1990) Mechanics of fibroblast locomotion: quantitative analysis of forces and motion at the leading lamellas of fibroblasts. J. Cell Biol. 111, 2513–2526.

    Article  PubMed  CAS  Google Scholar 

  25. Koay, E. J., Shieh, A. C., and Athanasiou, K. A. (2003) Creep indentation of single cells. J. Biomech. Eng. 125, 334–341.

    Article  PubMed  Google Scholar 

  26. Binnig, G., Quate, C. F., and Gerber, C. (1986) Atomic force microscope. Phys. Rev. Lett. 56, 930–933.

    Article  PubMed  Google Scholar 

  27. Radmacher, M. (2002) Measuring the elastic properties of living cells by the atomic force microscope. Methods Cell Biol. 68, 67–90.

    Article  PubMed  Google Scholar 

  28. A-Hassan, E., Heinz, W. F., Antonik, M. D., et al. (1998) Relative microelastic mapping of living cells by atomic force microscopy. Biophys. J. 74, 1564–1578.

    Article  PubMed  CAS  Google Scholar 

  29. Butt, H.-J. and Jaschke, M. (1995) Calculation of thermal noise in atomic force microscopy. Nanotechnology 6, 1–7.

    Article  Google Scholar 

  30. Lehenkari, P. P., Charras, G. T., Nykanen, A., and Horton, M. A. (2000) Adapting atomic force microscopy for cell biology. Ultramicroscopy 82, 289–295.

    Article  PubMed  CAS  Google Scholar 

  31. Lekka, M., Laidler, P., Gil, D., Lekki, J., Stachura, Z., and Hrynkiewicz, A. Z. (1999) Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur. Biophys. J. 28, 312–316.

    Article  PubMed  CAS  Google Scholar 

  32. Matzke, R., Jacobson, K., and Radmacher, M. (2001) Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nature Cell Biol. 3, 607–610.

    Article  PubMed  CAS  Google Scholar 

  33. Mathur, A. B., Collinsworth, A. M., Reichert, W. M., Kraus, W. E., and Truskey, G. A. (2001) Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J. Biomech. 34, 1545–1553.

    Article  PubMed  CAS  Google Scholar 

  34. Charras, G. T., Lehenkari, P. P., and Horton, M. A. (2001) Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions. Ultramicroscopy 86, 85–95.

    Article  PubMed  CAS  Google Scholar 

  35. Rotsch, C., Jacobson, K., and Radmacher, M. (1999) Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc. Natl. Acad. Sci. USA 96, 921–926.

    Article  PubMed  CAS  Google Scholar 

  36. Domke, J., Parak, W. J., George, M., Gaub, H. E., and Radmacher, M. (1999) Mapping the mechanical pulse of single cardiomyocytes with the atomic force microscope. Eur. Biophys. J. 28, 179–186.

    Article  PubMed  CAS  Google Scholar 

  37. Costa, K. D. and Yin, F. C. (1999) Analysis of indentation: implications for measuring mechanical properties with atomic force microscopy. J. Biomech. Eng. 121, 462–471.

    Article  PubMed  CAS  Google Scholar 

  38. Mahaffy, R. E., Shih, C. K., MacKintosh, F. C., and Kas, J. (2000) Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys. Rev. Lett. 85, 880–883.

    Article  PubMed  CAS  Google Scholar 

  39. Mathur, A. B., Truskey, G. A., and Reichert, W. M. (2000) Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells. Biophys. J. 78, 1725–1735.

    Article  PubMed  CAS  Google Scholar 

  40. Cleveland, J. P., Manne, S., Bocek, D., and Hansma, P. K. (1993) A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev. Sci. Instrum. 64, 403–405.

    Article  CAS  Google Scholar 

  41. Sader, J. E., Larson, I., Mulvaney, P., and White, L. R. (1995) Method for the calibration of atomic force microscope cantilevers. Rev. Sci. Instrum. 66, 3789–3798.

    Article  CAS  Google Scholar 

  42. Sader, J. E., Chon, J. W. M., and Mulvaney, P. (1999) Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70, 3967–3969.

    Article  CAS  Google Scholar 

  43. Ruan, J.-A. and Bhushan, B. (1994) Atomic-scale friction measurements using friction force microscopy: Part I—General principles and new measurement techniques. ASME J. Tribol. 116, 378–388.

    Article  CAS  Google Scholar 

  44. Tortonese, M. and Kirk, M. (1997) Characterization of application specific probes for SPMs. Micromach. Imag. SPIE 3009, 53–60.

    Article  CAS  Google Scholar 

  45. Jensen, F. (1993) Z calibration of the atomic force microscope by means of a pyramidal tip. Rev. Sci. Instrum. 64, 2595–2597.

    Article  CAS  Google Scholar 

  46. Heinz, W. F. and Hoh, J. H. (1999) Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope. Trends Biotechnol. 17, 143–150.

    Article  PubMed  CAS  Google Scholar 

  47. Weisenhorn, A. L., Khorsandi, M., Kasas, S., Gotzos, V., and Butt, H.-J. (1993) Deformation and height anomaly of soft surfaces studied with an AFM. Nanotechniques 4, 106–113.

    Article  CAS  Google Scholar 

  48. Sneddon, I. N. (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57.

    Article  Google Scholar 

  49. Johnson, K. L. (1985) Contact Mechanics, Cambridge University Press, New York.

    Google Scholar 

  50. Domke, J. and Radmacher, M. (1998) Measuring the elastic properties of thin polymer films with the atomic force microscope. Langmuir 14, 3320–3325.

    Article  CAS  Google Scholar 

  51. Dimitriadis, E. K., Horkay, F., Maresca, J., Kachar, B., and Chadwick, R. S. (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82, 2798–2810.

    Article  PubMed  CAS  Google Scholar 

  52. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992) Numerical Recipes in FORTRAN 77: The Art of Scientific Computing, Cambridge University Press, New York.

    Google Scholar 

  53. Briscoe, B. J., Sebastian, K. S., and Adams, M. J. (1994) The effect of indenter geometry on the elastic response to indentation. J. Phys. D: Appl. Phys. 27, 1156–1162.

    Article  CAS  Google Scholar 

  54. Hoh, J. H. and Schoenenberger, C.-A. (1994) Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J. Cell Sci. 107, 1105–1114.

    PubMed  Google Scholar 

  55. Schaus, S. S. and Henderson, E. R. (1997) Cell viability and probe-cell membrane interactions of XR1 glial cells imaged by atomic force microscopy. Biophys. J. 73, 1205–1214.

    Article  PubMed  CAS  Google Scholar 

  56. Haydon, P. G., Lartius, R., Parpura, V., and Marchese-Ragona, S. P. (1996) Membrane deformation of living glial cells using atomic force microscopy. J. Microsc. 182, 114–120.

    Article  PubMed  CAS  Google Scholar 

  57. Albrecht, T. R., Akamine, S., Carver, T. E., and Quate, C. F. (1990) Microfabrication of cantilever styli for the atomic force microscope. J. Vac. Sci. Technol. A 8, 3386–3396.

    Article  CAS  Google Scholar 

  58. Tortonese, M. (1997) Cantilevers and tips for atomic force microscopy. IEEE Eng. Med. Biol. Mag. 16, 28–33.

    Article  PubMed  CAS  Google Scholar 

  59. Weisenhorn, A. L., Maivald, P., Butt, H.-J., and Hansma, P. K. (1992) Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic force microscope. Phys. Rev. B 45, 11,226–11,232.

    Article  Google Scholar 

  60. Senden, T. J. and Ducker,W. A. (1994) Experimental determination of spring constants in atomic force microscopy. Langmuir 10, 1003–1004.

    Article  Google Scholar 

  61. Horton, M. A., Charras, G., Ballestrem, C., and Lehenkari, P. (2000) Integration of atomic force and confocal microscopy. Single Mol. 1, 135–137.

    Article  CAS  Google Scholar 

  62. Landau, L. D. and Lifshitz, E. M. (1970) Theory of Elasticity, Pergamon, Oxford.

    Google Scholar 

  63. Sader, J. E. and White, L. (1993) Theoretical analysis of the static deflection of plates for atomic force microscope applications. J. Appl. Phys. 74, 1–9.

    Article  CAS  Google Scholar 

  64. Sader, J. E. (1995) Parallel beam approximation for V-shaped atomic force microscope cantilevers. Rev. Sci. Instrum. 66, 4583–4587.

    Article  CAS  Google Scholar 

  65. Le Grimellec, C., Lesniewska, E., Giocondi, M. C., Finot, E., Vie, V., and Goudonnet, J. P. (1998) Imaging of the surface of living cells by low-force contactmode atomic force microscopy. Biophys. J. 75, 695–703.

    Article  PubMed  Google Scholar 

  66. Schwarz, U. D., Haefke, H., Reimann, P., and Güntherodt, H. J. (1994) Tip artefacts in scanning force microscopy. J. Microsc. 173, 183–197.

    CAS  Google Scholar 

  67. Grütter, P., Zimmermann-Edling, W., and Brodbeck, D. (1992) Tip artifacts of microfabricated force sensors for atomic force microscopy. Appl. Phys. Lett. 60, 2741–2743.

    Article  Google Scholar 

  68. Mahaffy, R. E., Park, S., Gerde, E., Kas, J., and Shih, C. K. (2004) Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys. J. 86, 1777–1793.

    Article  PubMed  CAS  Google Scholar 

  69. Charras, G., Lehenkari, P., and Horton, M. (2002) Biotechnological applications of atomic force microscopy. Methods Cell Biol. 68, 171–191.

    Article  PubMed  CAS  Google Scholar 

  70. Benoit, M. (2002) Cell adhesion measured by force spectroscopy on living cells. Methods Cell Biol. 68, 91–114.

    Article  PubMed  CAS  Google Scholar 

  71. Vie, V., Giocondi, M. C., Lesniewska, E., Finot, E., Goudonnet, J. P., and Le Grimellec, C. (2000) Tapping-mode atomic force microscopy on intact cells: optimal adjustment of tapping conditions by using the deflection signal. Ultramicroscopy 82, 279–288.

    Article  PubMed  CAS  Google Scholar 

  72. Nagao, E. and Dvorak, J. A. (1999) Phase imaging by atomic force microscopy: analysis of living homoiothermic vertebrate cells. Biophys. J. 76, 3289–3297.

    Article  PubMed  CAS  Google Scholar 

  73. Hansma, H. G., Kim, K. J., Laney, D. E., et al. (1997) Properties of biomolecules measured from atomic force microscope images: a review. J. Struct. Biol. 119, 99–108.

    Article  PubMed  CAS  Google Scholar 

  74. Rotsch, C., Braet, F., Wisse, E., and Radmacher, M. (1997) AFM imaging and elasticity measurements on living rat liver macrophages. Cell Biol. Int. 21, 685–696.

    Article  PubMed  CAS  Google Scholar 

  75. You, H. X., Lau, J. M., Zhang, S., and Yu, L. (2000) Atomic force microscopy of living cells: a preliminary study of the disruptive effect of cantilever tip on cell morphology. Ultramicroscopy 82, 297–305.

    Article  PubMed  CAS  Google Scholar 

  76. Braet, F., de Zanger, R., Seynaeve, C., Baekeland, M., and Wisse, E. (2001) A comparative atomic force microscopy study on living skin fibroblasts and liver endothelial cells. J. Electron Microsc. 50, 283–290.

    Article  CAS  Google Scholar 

  77. McElfresh, M., Baesu, E., Balhorn, R., Belak, J., Allen, M. J., and Rudd, R. E. (2002) Combining constitutive materials modeling with atomic force microscopy to understand the mechanical properties of living cells. Proc. Natl. Acad. Sci. USA 99(Suppl. 2), 6493–6497.

    Article  PubMed  CAS  Google Scholar 

  78. Radmacher, M., Tillmann, R., and Gaub, H. (1993) Imaging viscoelasticity by force modulation with the atomic force microscope. Biophys. J. 64, 735–742.

    Article  PubMed  CAS  Google Scholar 

  79. Radmacher, M., Fritz, M., Kacher, C. M., Cleveland, J. P., and Hansma, P. K. (1996) Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 70, 556–567.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Costa, K.D. (2006). Imaging and Probing Cell Mechanical Properties With the Atomic Force Microscope. In: Taatjes, D.J., Mossman, B.T. (eds) Cell Imaging Techniques. Methods in Molecular Biology™, vol 319. Humana Press. https://doi.org/10.1007/978-1-59259-993-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-993-6_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-157-8

  • Online ISBN: 978-1-59259-993-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics