Skip to main content

Chemistry for Chemical Genomics

  • Protocol
Chemical Genomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 310))

Abstract

New methods and strategies have been developed to design and use small molecules that allow the functional dissection of molecular pathways, cells, and organisms by selective small-molecule ligands or modulators. In this overview, we are focusing on diversity aspects, design methods, and chemical synthesis strategies for the application of small molecules as tools for chemical genomics. Examples for different successful chemical-genomics strategies include the selection of diverse drug-like molecules, target family—focused compound libraries, natural-product chemistry, and diversity-oriented synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schreiber, S. L. (1998) Chemical genetics resulting from a passion for synthetic organic chemistry. Bio. Med. Chem. 6, 1127–1152.

    Article  CAS  Google Scholar 

  2. Kubinyi, H. and Müller, G. (eds.). (2004) Chemogenomics in drug discovery, a medicinal chemistry perspective. In Methods and Principles in Medicinal Chemistry, Wiley-VCH, Weinheim, Germany.

    Google Scholar 

  3. Ferenc Darvas, F., Guttman, A., and Dormann, G. (2004) Chemical Genomics. Marcel Dekker, New York.

    Google Scholar 

  4. Salemme, F. R. (2003) Chemical genomics as an emerging paradigm for postgenomic drug discovery. Pharmacogenomics 4, 1–11.

    Article  Google Scholar 

  5. Crews, C. M. and Splittgerber, U. (1999) Chemical genetics: exploring and controlling cellular processes with chemical probes. TIBS 5, 317–320.

    Google Scholar 

  6. Morphy, R., Kay, C., and Rankovic, Z. (2004) From magic bullets to designed multiple ligands. Drug Discovery Today 9, 641–651.

    Article  PubMed  CAS  Google Scholar 

  7. Kuntz, I. D., Chen, K., Sharp, K. A., and Kollmann, P. A. (1999) The maximal affinity of ligands. Proc. Natl. Acad. Sci. USA 96, 9997–10,002.

    Article  PubMed  CAS  Google Scholar 

  8. Spencer, R. (1998) High-throughput screening of historic collections: observations on file size, biological targets, and file diversity. Biotechnol. Bioeng. 61, 61–67.

    Article  PubMed  CAS  Google Scholar 

  9. Lipinski, C. A., Lombardo, F., Dominy, B. W., and Feeney, P. J. (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Delivery Rev. 23, 4–25.

    Article  Google Scholar 

  10. Proudfoot, J. R. (2002) Drugs, leads, and drug-likeness: an analysis of some recently launched drugs. Bioorg. Med. Chem. Lett. 12, 1647–1650.

    Article  PubMed  CAS  Google Scholar 

  11. Ertl, P., Rohde, B., and Selzer, P. (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 43, 3714–3717.

    Article  PubMed  CAS  Google Scholar 

  12. http://www.cosmologic.de. Accessed on March 30, 2005.

  13. Brown, R. D. and Martin, Y. C. (1996) Use of structure-activity data to compare structure-based clustering methods and descriptors for use in compound selection. J. Chem. Inf. Comput. Sci. 36, 572–584.

    CAS  Google Scholar 

  14. Shemetulskis, N. A., Dunbar, J. B., Dunbar, B. W., Moreland, D. W., and Humblet, C. (1995) Enhancing the diversity of a corporate database using chemical clustering and analysis. J. Comp. Aided Mol. Design 9, 407–416.

    Article  CAS  Google Scholar 

  15. Rishton, G. M. (1997) Reactive compounds and in vitro false positives in HTS. Drug Discovery Today 2, 382–384.

    Article  CAS  Google Scholar 

  16. Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L., and Mitchtison, T. J. (1999) Small molecule inhibitor of spindle bipolarity identified in a phenotype-based screen. Science 286, 971–974.

    Article  PubMed  CAS  Google Scholar 

  17. Kato-Stankiewicz, J., Hakimi, I., Zhi, G., et al. (2002) Inhibitors of Ras-Raf-1 interaction identified by two-hybrid screening revert Ras-dependent transformation phenotypes in human cancer cells. Proc. Nat. Acad. Sci. USA 99, 14, 14,398–14,403.

    Article  PubMed  CAS  Google Scholar 

  18. Dubowchik, G. M., Vrudhula, V. M., Dasgupta, B., et al. (2001) 2-Aryl-2,2-difluoroacetamide FKBP12 ligands: synthesis and X-ray structural studies. Org. Lett. 3, 3987–3990.

    Article  PubMed  CAS  Google Scholar 

  19. Lu, Y., Sakamuri, S., Chen, Q.-Z., et al. (2004) Solution phase parallel synthesis and evaluation of MAPK inhibitory activities of close structural analogues of a Ras pathway modulator. Bioorg. Med. Chem. Lett. 14, 3957–3962.

    Article  PubMed  CAS  Google Scholar 

  20. Martin, E. J., Blaney, J. M., Siani, M. A., Spellmeyer, D. C., Wong, A. K., and Moos, W. H. (1995) Measuring diversity: experimental design of combinatorial libraries for drug discovery. J. Med. Chem. 38, 1431–1436.

    Article  PubMed  CAS  Google Scholar 

  21. Schneider, G., Chomienne-Clement, O., Hilfiger, L., et al. (2000) Virtual screening for bioactive molecules by evolutionary de novo design. Angew. Chemie Int. Ed. 39, 4130–4133.

    CAS  Google Scholar 

  22. Schneider, G., Lee, M.-L., Stahl, M., and Schneider, P. (2000) De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks. J. Comput. Aided Mol. Des. 14, 487–494.

    Article  PubMed  CAS  Google Scholar 

  23. Manning, G., Whyte, D. B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002) The protein kinase complement of the human genome. Science 298, 1912–1934.

    Article  PubMed  CAS  Google Scholar 

  24. Deng, Z., Chuaqui, C., and Singh, J. (2004) Structural Interaction Fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions. J. Med. Chem. 47, 337–344.

    Article  PubMed  CAS  Google Scholar 

  25. Weber, L. Fractal theory applied to structure-activity relationships. Euro-QSAR 2004, Istanbul, Turkey, September 5–10, 2005.

    Google Scholar 

  26. Verdine, L. G. (1996) The combinatorial chemistry of nature. Nature 384, 11–13.

    Google Scholar 

  27. Lee, M.-L. and Schneider, G. (2001) Scaffold architecture and pharmacophoric properties of trade drugs and natural products. J. Comb. Chem. 3, 284–289.

    Article  PubMed  CAS  Google Scholar 

  28. Barone, R. and Chanon, M. (2001) A new and simple approach to chemical complexity. Application to the synthesis of natural products. J. Chem. Inf. Comput. Sci. 41, 269–272.

    PubMed  CAS  Google Scholar 

  29. Hann, M. M., Leach, A. R., and Harper, G. (2001) Molecular complexity and its impact on the probability of finding leads for drug discovery. J. Chem. Inf. Comput. Sci. 41, 856–864.

    PubMed  CAS  Google Scholar 

  30. Brohm, D., Metzger, S., Bhargava, A., Müller, O., Lieb, F., and Waldmann, H. (2002) Natural products are biologically validated starting points in structural space for compound library development: solid phase synthesis of dysidiolide-derived phosphatase inhibitors. Angew. Chem. Int. Ed. 41, 307–311.

    Article  CAS  Google Scholar 

  31. Schreiber, S. L. (2000) Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287, 1964–1969.

    Article  PubMed  CAS  Google Scholar 

  32. Weber, L. (2000) High-diversity combinatorial libraries. Curr. Opin. Chem. Biol. 4, 295–302.

    Article  PubMed  CAS  Google Scholar 

  33. Creighton, C. J., Zapf, C. W., Bu, J. H., and Goodman, M. (1999) Solid-phase synthesis of pyridones and pyridopyrazines as peptidomimetic scaffolds. Org. Lett. 1, 1647–1649.

    Article  Google Scholar 

  34. Peng, G., Sohn, A., and Gallop, M. A. (1999) Stereoselective solid-phase synthesis of a triaza tricyclic ring system: a new chemotype for lead discovery. J. Org. Chem. 64, 8342–8349.

    Article  PubMed  CAS  Google Scholar 

  35. Brooking, P., Crawshaw, M., Hird, N. W., et al. (1999) The development of a solidphase tsuge reaction and its application in high throughput robotic synthesis. Synthesis 11, 1986–1992.

    Article  Google Scholar 

  36. Paulsen, H., Antons, S., Brandes, A., et al. (1999) Stereoselective Mukaiyama-Michael/Michael/Aldol domino cyclization as the key step in the synthesis of pentasubstituted arenes: an efficient access to highly active inhibitors of cholesteryl ester transfer protein (CETP). Angew. Chem. Int. Ed. 38, 3373–3375.

    Article  CAS  Google Scholar 

  37. Lee, D., Sello, J. K., and Schreiber, S. L. (2000) Pairwise use of complexitygenerating reactions in diversity-oriented organic synthesis. Org. Lett. 2, 709–712.

    Article  PubMed  CAS  Google Scholar 

  38. Reichwein, J. F., Wels, B., Kruijtzer, J. A. W., Versluis, C., Liskamp, R. M. J. (1999) Rolling loop scan: an approach featuring ring-closing metathesis for generating libraries of peptides with molecular shapes mimicking bioactive conformations or local folding of peptides and proteins. Angew. Chem. Int. Ed. 38, 3684–3687.

    Article  CAS  Google Scholar 

  39. Taylor, S. J., Taylor, A. M., and Schreiber, S. L. (2004) Synthetic strategy toward skeletal diversity via solid-supported, otherwise unstable reactive intermediates. Angewandte Chemie 43, 1681–1685.

    Article  PubMed  CAS  Google Scholar 

  40. Burke, M. D. and Schreiber, S. L. (2004) A planning strategy for diversity-oriented synthesis. Angewandte Chemie 43, 46–58.

    Article  PubMed  Google Scholar 

  41. Shah, K., Liu, Y., Deirmengian, C., and Shokat, K. M. (1997) Engineering unnatural nucleotide specificity for Rous sarcoma virus tyrosine kinase to uniquely label its direct substrates. Proc. Nat. Acad. Sci. USA 94, 3565–3570.

    Article  PubMed  CAS  Google Scholar 

  42. Huc, I. and Lehn, J.-M. (1997) Virtual combinatorial libraries: dynamic generation of molecular and supramolecular diversity by self-assembly. Proc. Natl. Acad. Sci. USA 94, 2106–2110.

    Article  PubMed  CAS  Google Scholar 

  43. Lewis, W. G., Green, L. G., Grynszpan, F., et al. (2002) Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew. Chem. Int. Ed. 41, 1053–1057

    CAS  Google Scholar 

  44. Illgen, K., Enderle, T., Broger, C., and Weber, L. (2000) Simulated molecular evolution in a full combinatorial library. Chem. Biol. 7, 433–441.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Weber, L. (2005). Chemistry for Chemical Genomics. In: Zanders, E.D. (eds) Chemical Genomics. Methods in Molecular Biology™, vol 310. Humana Press. https://doi.org/10.1007/978-1-59259-948-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-948-6_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-399-2

  • Online ISBN: 978-1-59259-948-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics