Skip to main content

Gene Silencing Using Adenoviral RNAi Vector in Vascular Smooth Muscule Cells and Cardiomyocytes

  • Protocol

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 112))

Abstract

RNA interference (RNAi) is a new and rapidly progressing technology for facilitating functional gene silencing. To perform highly efficient RNAi in cardiomyocytes, vascular smooth muscle cells, and vascular endothelial cells, which are known to have very low transfection efficiency, adenovirus-mediated RNAi was employed. The effects of RNAi on GAPDH transcripts were successfully reduced by nearly 90% in the primary cultured cells, indicating that adenovirus-mediated gene silencing is a promising technique for gene si lencing in cardiovascular studies. This chapter describes general guidelines for selecting RNAi target sites, construction of a shuttle vector encoding short hairpin RNAi, and generation of recombinant adenovirus.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hardy, S., Kitamura, M., Harris-Stansil, T., Dai, Y., and Phipps, M. L. (1997) Construction of adenovirus vectors through Cre-lox recombination. J. Virol. 71, 1842–1849.

    PubMed  CAS  Google Scholar 

  2. Kasahara, H., Usheva, A., Ueyama, T., Aoki, H., Horikoshi, N., and Izumo, S. (2001) Characterization of homo-and heterodimerization of cardiac Csx/Nkx2.5 homeoprotein. J. Biol. Chem. 276, 4570–4580.

    Article  PubMed  CAS  Google Scholar 

  3. Aoki, H., Kang, P.M., Hampe, J., et al. (2002) Direct activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiac myocytes. J. Biol. Chem. 277, 10,244–10,250.

    Article  PubMed  CAS  Google Scholar 

  4. Kasahara, H., Ueyama, T., Wakimoto, H., et al. (2003) Nkx2.5 homeoprotein regulates expression of gap junction protein connexin 43 and sarcomere organiza tion in postnatal cardiomyocytes. J. Mol. Cell Cardiol. 35, 243–256.

    Article  PubMed  CAS  Google Scholar 

  5. Brummelkamp, T. R., Bernards, R., and Agami, R. (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553.

    Article  PubMed  CAS  Google Scholar 

  6. Nyberg-Hoffman, C. and Aguilar-Cordova, E. (1999) Instability of adenoviral vectors during transport and its implication for clinical studies. Nat. Med. 5, 955–957.

    Article  PubMed  CAS  Google Scholar 

  7. Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W., and Tuschl, T. (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Droso phila melanogaster embryo lysate. EMBO J. 20, 6877–6888.

    Article  PubMed  CAS  Google Scholar 

  8. Adachi, M., Katsumura, K. R., Fujii, K., Kobayashi, S., Aoki, H., and Matsuzaki. M. (2003) Proteasome-dependent decrease in Akt by growth factors in vascular smooth muscle cells. FEBS Lett. 554, 77–80.

    Article  PubMed  CAS  Google Scholar 

  9. Sledz, C. A., Holko, M., de Veer, M. J., Silverman R. H., and Williams B. R. (2003) Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol. 5, 834–839.

    Article  PubMed  CAS  Google Scholar 

  10. Bridge, A. J., Pebernard, S., Ducraux, A., Nicoulaz, A. L., and Iggo, R. (2003) Induction of an interferon response by RNAi vectors in mammalian cells. Nat. Genet. 34, 263,264.

    Article  Google Scholar 

  11. Khvorova, A. Reynolds, A., and Jayasena, S. D. (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216.

    Article  PubMed  CAS  Google Scholar 

  12. Schwarz, D. S,. Hutvagner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P. D. (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208.

    Article  PubMed  CAS  Google Scholar 

  13. Doench, J. G., Petersen, C. P., and Sharp, P. A. (2003) siRNAs can function as miRNAs. Genes Dev. 17, 438–442.

    Article  PubMed  CAS  Google Scholar 

  14. Grewal, S. I. and Moazed, D. (2003) Heterochromatin and epigenetic control of gene expression. Science 301, 798–802.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Kasahara, H., Aoki, H. (2005). Gene Silencing Using Adenoviral RNAi Vector in Vascular Smooth Muscule Cells and Cardiomyocytes. In: Sun, Z. (eds) Molecular Cardiology. Methods in Molecular Medicine™, vol 112. Humana Press. https://doi.org/10.1007/978-1-59259-879-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-879-3_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-363-3

  • Online ISBN: 978-1-59259-879-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics