Skip to main content

Basic Transplantation Methods in Rodent Brain

  • Protocol
Neural Transplantation Methods

Part of the book series: Neuromethods ((NM,volume 36))

Abstract

The two fundamental criteria for successful cell transplantation in the adult mammalian brain are, first, the selection of an appropriate donor tissue at a stage of development when it can survive and grow after transplantation, and, second, the selection of an implantation method and site within the host brain where the graft can be nourished, vascularized, and rapidly incorporated into the host environment (Stenevi et al., 1976). The first of these topics is addressed in the first seven chapters of the present volume, in which the selection, collection, dissection, and handling of embryonic tissues, cell lines, engineered cells, and artificial devices for implantation are each considered in some detail. The second section, introduced by the present chapter, considers the alternative methods of implantation available for transfer of the graft tissues into the nervous system of the host animal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguayo, A. J., Björklund, A., Stenevi, U., and Carlstedt, T. (1984) Fetal mesencephalic neurons survive and extend long axons across peripheral nervous system grafts inserted into the adult rat striatum. Neurosci. Lett. 45, 53–58.

    Article  PubMed  CAS  Google Scholar 

  • Baker-Cairns, B. J., Sloan, D. J., Broadwell, R. D., Puklavec, M., and Charlton, H. M. (1996) Contributions of donor and host blood vessels in CNS allografts. Exp. Neurol. 142, 36–46.

    Article  PubMed  CAS  Google Scholar 

  • Barker, R. A., Fricker, R. A., Abrous, D. N., Fawcett, J. W., and Dunnett, S. B. (1995) Comparative study of the preparation techniques for improving the viability of nigral grafts using vital stain, in vitro cultures and in vivo grafts. Cell Transplant. 4, 173–200.

    Article  PubMed  CAS  Google Scholar 

  • Björklund, A., Dunnett, S. B., Stenevi, U., Lewis, M. E., and Iversen, S. D. (1980) Reinnervation of the denervated striatum by substantia nigra transplants: functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res. 199, 307–333.

    Article  PubMed  Google Scholar 

  • Björklund, A. and Stenevi, U. (1984) Intracerebral neural implants: neuronal replacement and reconstruction of damaged circuitries. Ann. Rev. Neurosci. 7, 279–308.

    Article  PubMed  Google Scholar 

  • Brecknell, J. E., Du, J.-S., Muir, E. M., Fidler, P. S., Hlavin, M.-L., Dunnett, S. B., and Fawcett, J. W. (1996b) Bridge grafts of fibroblast growth factor-4-secreting Schwannoma cells promote functional axonal regeneration in the nigrostriatal pathway of the adult rat. Neuroscience 74, 775–784.

    Article  PubMed  CAS  Google Scholar 

  • Brecknell, J. E., Haque, N. S. K., Du, J.-S., Muir, E. M., Hlavin, M.-L., Fawcett, J. W., and Dunnett, S. B. (1996a) Functional and anatomical reconstruction of the 6-OHDA lesioned nigrostriatal system of the adult rats by RN22 nigrostriatal bridge grafts. Neuroscience 71, 913–925.

    Article  PubMed  CAS  Google Scholar 

  • Broadwell, R. D., Charlton, H. M., Ebert, P., Hickley, W. F., Villegas, J. C., and Wolf, A. L. (1990) Angiogenesis and the blood-brain barrier in solid and dissociated cell grafts within the CNS. Prog. Brain Res. 82, 95–101.

    Article  PubMed  CAS  Google Scholar 

  • David, S. and Aguayo, A. J. (1981) Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214, 931–933.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S. B. and Mayer, E. (1992) Neural grafts, growth factors and trophic mechanisms of recovery, in Neurodegeneration (Hunter, A. J. and Clarke, M., eds.), Academic, New York, pp. 183–217.

    Google Scholar 

  • Dunnett, S. B., Rogers, D. C., and Richards, S. J. (1989) Nigrostriatal reconstruction after 6-OHDA lesions in rats: combination of dopamine-rich nigral grafts and nigrostriatal bridge grafts. Exp. Brain Res. 75, 523–535.

    Article  PubMed  CAS  Google Scholar 

  • Fawcett, J. W., Barker, R. A., and Dunnett, S. B. (1995) Dopaminergic neuronal survival and the effects of bFGF in explant, three-dimensional and monolayer cultures of embryonic rat ventral mesencephalon. Exp. Brain Res. 106, 275–282.

    Article  PubMed  CAS  Google Scholar 

  • Fonseca, M., DeFilipe, J., and Fairén, A. (1988) Local connections in transplanted and normal cerebral cortex of rats. Exp. Brain Res. 69, 387–398.

    Article  PubMed  CAS  Google Scholar 

  • Fray, P. J., Dunnett, S. B., Iversen, S. D., Björklund, A., and Stenevi, U. (1983) Nigral transplants reinnervating the dopamine-depleted neostriatum can sustain intracranial self stimulation. Science 219, 416–419.

    Article  PubMed  CAS  Google Scholar 

  • Freed, W. J. (1985) Transplantation of tissues into the cerebral ventricles: methodological details and rate of graft survival, in Neural Grafting in the Mammalian Brain (Björklund, A. and Stenevi, U., eds.), Elsevier, Amsterdam, pp. 31–40.

    Google Scholar 

  • Fricker, R. A., Barker, R. A., Fawcett, J. W., and Dunnett, S. B. (1996) Comparative study of preparation techniques for improving the viability of striatal grafts using vital stains, in vitro cultures and in vivo grafts. Cell Transplant. 5, 599–611.

    Article  PubMed  CAS  Google Scholar 

  • Gash, D. M., Mresjanac, M., Junn, F., and Zhang, Z. (1994) Trophic mechanisms mediating functional recovery following intrastriatal transplantation, in Functional Neural Transplantation (Dunnett, S. B. and Björklund, A., eds.), Raven, New York, pp. 139–156.

    Google Scholar 

  • Isenmann, S., Brandner, S., Kühne, G., Boner, J., and Aguzzi, A. (1996) Comparative in vivo and pathological analysis of the blood-brain barrier in mouse telencephalic transplants. Neuropathol. Appl. Neurobiol. 22, 118–128.

    Article  PubMed  CAS  Google Scholar 

  • Labbe, R., Firl, A., Mufson, E. J., and Stein, D. G. (1983) Fetal brain transplants: reduction of cognitive deficits in rats with frontal cortex lesions. Science 221, 470–472.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, J. M., Huang, S. K., and Raisman, G. (1984) Vascular and astrocytic reactions during establishment of hippocampal transplants in adult host brain. Neuroscience 12, 745–760.

    Article  PubMed  CAS  Google Scholar 

  • Leigh, K., Elisevich, K., and Rogers, K. A. (1994) Vascularization and microvascular permeability in solid versus cell-suspension embryonic neural grafts. J. Neurosurg. 81, 272–283.

    Article  PubMed  CAS  Google Scholar 

  • Nakao, N., Frodl, E. M., Duan, W.-M., Widner, H., and Brundin, P. (1994) Lazaroids improve the survival of grafted rat embryonic dopamine neurons. Proc. Natl. Acad. Sci. USA 91, 12,408–12,412.

    Article  PubMed  CAS  Google Scholar 

  • Nikkhah, G., Olsson, M., Eberhard, J., Bentlage, C., Cunningham, M. G., and Björklund, A. (1994) Microtransplantation approach for cell suspension grafting in the rat Parkinson model: a detailed account of the methodology. Neuroscience 63, 57–72.

    Article  PubMed  CAS  Google Scholar 

  • Olson, L., Ayer-LeLievre, C., Ebendal, T., Eriksdotter-Nilsson, M., Ernfors, P., Henschen, A., Hoffer, B. J., Giacobini, M. M. J., Mouton, P., Palmer, M. R., Persson, H., Sara, V., Stromberg, I., and Wetmore, C. (1990) Grafts, growth factors and grafts that make growth factors. Prog. Brain Res. 82, 55–66.

    Article  PubMed  CAS  Google Scholar 

  • Olson, L., Björklund, H., and Hoffer, B. J. (1984) Camera bulbi anterior: new vistas on a classical locus for neural tissue transplantation, in Neural Transplants: Development and Function (Sladek, J. R. and Gash, D. M., eds.), Plenum, New York, pp. 125–165.

    Google Scholar 

  • Olson, L. and Malmfors, T. (1970) Growth characteristics of adrenergic nerves in the adult rat. Fluorescence histochemical and 3H-noradrenaline uptake studies using tissue transplantation to the anterior chamber of the eye. Ada Physiol. Scand. 348(Suppl), 1–112.

    CAS  Google Scholar 

  • Olson, L. and Seiger, Å. (1972) Brain tissue transplanted to the anterior chamber of the eye. I. Fluorescence histochemistry of immature catecholamine and 5-hydroxytryptamine neurons innervating the iris. Z. Zellforsch. 195, 175–194.

    Article  Google Scholar 

  • Olson, L., Seiger, Å., and Strömberg, I. (1983) Intraocular transplantation in rodents: a detailed account of the procedure and examples of its use in neurobiology with special reference to brain tissue grafting. Adv. Cell. Neurobiol. 4, 407–442.

    Google Scholar 

  • Paíno, C. L., Fernandez-Valle, C., Bates, M. L., and Bunge, M. B. (1994) Regrowth of axons in lesioned adult rat spinal cord—promotion by implants of cultured Schwann cells. J. Neurocytol. 23, 433–452.

    Article  PubMed  Google Scholar 

  • Rosenblad, C., Martinez-Serrano, A., and Björklund, A. (1997) Intrastriatal glial cell line-derived neurotrophic factor promotes sprouting of spared nigrostriatal dopaminergic afferents and induces recovery of function in a rat model of Parkinson’s disease. Neuroscience 82, 129–137.

    Article  Google Scholar 

  • Rosenstein, J. M. and Brightman, M. W. (1983) Circumventing the blood-brain barrier with autonomic ganglion transplants. Science 221, 879–881.

    Article  PubMed  CAS  Google Scholar 

  • Schierle, G. S., Hansson, O., Leist, M., Nicotera, P., Widner, H., and Brundin, P. (1999) Caspase inhibition reduces apoptosis and increases survival of nigral transplants. Nature Med. 5, 97–100.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, R. H., Björklund, A., Stenevi, U., and Dunnett, S. B. (1983) Intracerebral grafting of dissociated CNS tissue suspensions, in Nerve, Organ and Tissue Regeneration: Research Perspectives (Seil, F. J., ed.), Academic, New York, pp. 325–357.

    Google Scholar 

  • Sinclair, S. R., Svendsen, C. N., Torres, E. M., Fawcett, J. W., and Dunnett, S. B. (1996) Effects of glial cell line-derived neurotrophic factor (GDNF) on embryonic nigral grafts. NeuroReport 7, 2547–2552.

    Article  PubMed  CAS  Google Scholar 

  • Stenevi, U., Björklund, A., and Svendgaard, N.-A. (1976) Transplantation of central and peripheral monoamine neurons to the adult rat brain: techniques and conditions for survival. Brain Res. 114, 1–20.

    Article  PubMed  CAS  Google Scholar 

  • Stenevi, U., Kromer, L. F., Gage, F. H., and Björklund, A. (1985) Solid neural grafts in intracerebral transplantation cavities, in Neural Grafting in the Mammalian CNS (Björklund, A. and Stenevi, U., eds.), Elsevier, Amsterdam, pp. 41–49.

    Google Scholar 

  • Vidal-Sanz, M., Bray, G. M., and Aguayo, A. J. (1992) Use of peripheral nerve grafts to study CNS regeneration, in Neural Transplantation. A Practical Approach (Dunnett, S. B. and Björklund, A., eds.), IRL, Oxford, pp. 93–104.

    Google Scholar 

  • Wilby, M., Sinclair, S. R., Muir, E. M., Zietlow, R., Adcock, K.H., Horellou, P., Dunnett, S. B., and Fawcett, J. W. (1998) GDNF-secreting clone of the Schwann cell line SCTM41 enhances survival and fibre outgrowth from embryonic nigral neurones grafted to the striatum and the lesioned substantia nigra. J. Neurosci. 19, 2301–2312.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Dunnett, S.B., Björklund, A. (2000). Basic Transplantation Methods in Rodent Brain. In: Dunnett, S.B., Boulton, A.A., Baker, G.B. (eds) Neural Transplantation Methods. Neuromethods, vol 36. Humana Press. https://doi.org/10.1007/978-1-59259-690-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-690-4_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-793-9

  • Online ISBN: 978-1-59259-690-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics