Skip to main content

Postsynthesis Functionalization of Oligonucleotides

  • Protocol
Protocols for Oligonucleotide Conjugates

Part of the book series: Methods in Molecular Biology ((MIMB,volume 26))

Abstract

Solid-phase oligodeoxynucleotide synthesis has become a routine procedure in most molecular-biology laboratories. The reagents for the synthesis of unmodified oligomers have been available for several years, and novel commercially available reagents that permit the introduction of useful analogs into DNA are offered with increasing frequency. Solid-phase RNA synthesis is also becoming accessible to the molecular-biology community. If a suitable protected derivative is available, solid-phase synthesis is usually the preferred method of incorporating a nonstandard residue into an oligomer. However, there are still situations in which it is advantageous, or even essential, to approach the synthesis of modified oligonucleotides in a different way, namely by derivatizing unprotected oligonucleotides or their analogs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knorre, D. G. and Vlassov, V. V. (1985) Complementary-addressed (sequence-specific) modification of nucleic acids, in Progress in Nucleic Acid Research and Molecular Biology, vol. 32 (Cohn, W. E. and Moldave, K., eds.), Academic, Orlando, FL, pp. 291–319.

    Google Scholar 

  2. Goodchild, J. (1990) Conjugates of oligonucleotides and modified oligonucleotides: a review of their synthesis and properties. Bioconj. Chem, 1, 165–187.

    Article  CAS  Google Scholar 

  3. Chambers, R W. and Moffatt, J. G. (1958) The synthesis of adenosine 5′ and uridine-5′ phosphoramidates. J. Am. Chem. Soc. 80, 3752–3756.

    Article  CAS  Google Scholar 

  4. Gilham, P. T. (1968) The synthesis of celluloses containing covalently bound nucleotides, polynucleotides, and nucleic acids. Biochemistry 7, 2809–2813.

    Article  CAS  Google Scholar 

  5. Moffatt, J. G. and Khorana, H. G. (1961) Nucleoside polyphosphates. X. The synthesis and some reactions of nucleoside-5′-phosphoromorpholidates and related compounds. Improved methods for the preparation of nucleoside-5′-polyphosphates. J. Am. Chem. Soc. 83, 649–658.

    Article  CAS  Google Scholar 

  6. Ivanovskaya, M. G., Gottikh, M. B., and Shabarova, Z. A. (1982) DNA-like duplexes containing repeats. IV. Template-directed polymerization of decade-oxyribonucleotide imidazole. Bioorgan. Khim. 8, 940–944.

    CAS  Google Scholar 

  7. Chu, B. C. F., Wahl, G. M., and Orgel, L. E. (1983) Derivatization of unprotected polynucleotides. Nucleic Acids Res. 11, 6513–6529.

    Article  CAS  Google Scholar 

  8. Chu, B. C. F. and Orgel, L. E. (1985) Detection of specific DNA sequences with short biotin-labeled probes. DNA 4, 327–331.

    CAS  Google Scholar 

  9. Cholet, A. and Kawashima, E. H. (1985) Biotin-labeled synthetic oligodeoxy-ribonucleotides: chemical synthesis and uses as hybridization probes. Nucleic Acids Res. 13, 1529–1541.

    Article  Google Scholar 

  10. Chu, B. C. F. and Orgel, L. E. (1988) Ligation of oligonucleotides to nucleic acids or proteins via disulfide bonds. Nucleic Acids Res. 16, 3671–3691.

    Article  CAS  Google Scholar 

  11. Ghosh, S. S., Kao, P. M., and Kwoh, D. Y. (1989) Synthesis of 5′-oligonucle-otide hydrazide derivatives and their use in preparation of enzyme-nucleic acid hybridization probes. Anal. Biochem. 178, 43–51.

    Article  CAS  Google Scholar 

  12. Hodges, R. R., Conway, N. E., and McLaughlin, L. W. (1989) “Post-assay” covalent labeling of phosphorothioate-containing nucleic acids with multiple fluorescent markers Biochemistry 28, 261–267

    Article  CAS  Google Scholar 

  13. Chu, B. C. F and Orgel, L. E. (1990) A simple procedure for cross-linking complementary oligonucleotides. DNA and Cell Biol. 9, 71–76.

    Article  CAS  Google Scholar 

  14. Chu, B. C. F. and Orgel, L. E. (1990) Optimization of the efficiency of cross-linking PtII oligonucleotide phosphorothioate complexes to complementary oligonucleotides. Nucleic Acids Res. 18, 5163–5171

    Article  CAS  Google Scholar 

  15. Weith, H. L. and Gilham, P. T (1967) Structural analysis of polynucleotides by sequential base elimination. The sequence of the terminal decanucleotide fragment of the ribonucleic acid from bacteriophage f2. J. Am. Chem. Soc. 89, 5473,5474

    Article  CAS  Google Scholar 

  16. Deng, G.-R. and Wu, R. (1983) Terminal transferase: use in the tailing of DNA and for in vitro mutagenesis, in Methods in Enzymology, vol. 100 (Wu, R., Grossman, L., and Moldave, K., eds.). Academic, New York, pp. 96–116.

    Google Scholar 

  17. Stribling, R. (1991) High-performance liquid chromatography of oligogua-nylates at high pH J Chromatog. 538, 474–479.

    Article  CAS  Google Scholar 

  18. Gilham, P T. (1962) An addition reaction specific for uridine and guanosine nucleotides and its apphcation to the modification of ribonuclease action J Am Chem. Soc. 84, 687–688

    Article  CAS  Google Scholar 

  19. Chu, B. C. F., Kramer, F. R., and Orgel, L. E. (1986) Synthesis of an amplifiable reporter RNA for bioassays. Nucleic Acids Res. 14, 5591–5603

    Article  CAS  Google Scholar 

  20. Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982) Molecular Clomng 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, p. 5,68

    Google Scholar 

  21. Chu, B. C. F. and Orgel, L. E, (1984) Preparation of ligation intermediates and related polynucleotide pyrophosphates. Biochim. Biophys. Acta 782, 103–105.

    Article  CAS  Google Scholar 

  22. Joyce, G. F., Inoue, T., and Orgel, L. E. (1984) Non-enzymatic template-directed synthesis on RNA random copolymers poly(C, U) templates. J Mol. Biol. 176, 279–306.

    Article  CAS  Google Scholar 

  23. Mukaiyama, T. and Hashimoto, M. (1971) Phosphorylation by oxidation-reduction condensation. Preparation of active phosphorylating reagents. Bull. Chem. Soc. Japan 47, 2284.

    Google Scholar 

  24. Maniatis, T., Fntsch, E. F., and Sambrook, J. (1982) Molecular Cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  25. Chu, B.C. F and Orgel, L. E (1985) Nonenzymatic sequence-specific cleavage of single-stranded DNA Proc. Natl. Acad Sci. USA 82, 963–967

    Article  CAS  Google Scholar 

  26. Dreyer, G. B and Dervan, P B. (1985) Sequence-specific cleavage of single-stranded DNA, Oligodeoxynucleotide-EDTA-Fe(II) Proc. Natl. Acad. Sci. USA 82, 968–972.

    Article  CAS  Google Scholar 

  27. Chen, C.-H. B. and Sigman, D. S (1986) Nuclease activity of 1,10-phenanthroline-copper: sequence-specific targeting. Proc. Natl. Acad. Sci. USA 83, 7147–7151

    Article  CAS  Google Scholar 

  28. LeMaitre, M., Bayard, B, and Lebleu, B. (1987) Specific antiviral activity of a poly(L-Iysine)-conjugated oligodeoxynbonucleotide sequence complementary to vesicular stomatitis virus N protein mRNA initiation site Proc. Natl. Acad Sci. USA 84, 648–652.

    Article  CAS  Google Scholar 

  29. Chu, B C. F. and Orgel, L E. (1989) Inhibition of DNA synthesis by cross-linking the template to platinum-thiol derivatives of complementary oligodeoxy-nucleotides. Nucleic Acids Res. 17, 4783–4798.

    Article  CAS  Google Scholar 

  30. Teare, J. and Wollenzien, P. (1989) Specificity of site directed psoralen addition to RNA. Nucleic Acids Res. 17, 3359–3372.

    Article  CAS  Google Scholar 

  31. King, T. P., Li, Y., and Kochoumian, L. (1978) Preparation of protein conjugates via intermolecular disulfide bond formation. Biochemistry 17, 1499–1506

    Article  CAS  Google Scholar 

  32. Blattler, W. A., Kuenzi, B. S., Lambert, J. M., and Senter, P. D. (1985) New heterobifunctional protein cross-linking reagent that forms an acid-labile link. Biochemistry 2A, 1517–1524.

    Article  Google Scholar 

  33. Tsang, V. C. W., Peralta, J. M., and Simons, A. R. (1983) Enzyme-linked immunoelectrotransfer blot techniques (EITB) for studying the specificities of antigens and antibodies separated by gel electrophoresis, in Methods in Enzymology, vol. 92 (Langone, J. J. and Van Vunalcis, H., eds.), Academic, New York, pp. 377–391.

    Google Scholar 

  34. EUman, G. I (1959) Tissue sulfhydryl groups. Arch. Biochem. Biophys 82, 70–77.

    Article  CAS  Google Scholar 

  35. Murakami, A., Tada, J., Yamagata, K., and Takano, J. (1989) Highly sensitive detection of DNA using enzyme-linked DNA-probe. 1. Colorimetric and fluorometric detection. Nucleic Acids Res. 17, 5587–5595.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Chu, B.C.E., Orgel, L.E. (1994). Postsynthesis Functionalization of Oligonucleotides. In: Protocols for Oligonucleotide Conjugates. Methods in Molecular Biology, vol 26. Humana Press. https://doi.org/10.1007/978-1-59259-513-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-513-6_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-252-1

  • Online ISBN: 978-1-59259-513-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics