Skip to main content

Protecting Groups in Oligonucleotide Synthesis

  • Protocol
Protocols for Oligonucleotide Conjugates

Part of the book series: Methods in Molecular Biology ((MIMB,volume 26))

Abstract

A biopolymer is synthesized by assembling monomeric or oligomeric blocks. Each block features at least a nucleophilic and an electrophilic function, i.e., the α-amino and the carboxylic functions for peptides, the 5′-OH and the 3′-function (phosphate, phosphoramidite, or phosphonate), for nucleotides. The nucleophilic and electrophilic sites are linked together at the coupling step. Protection is a necessity. It guarantees the chemoselectivity of coupling and the solubility of synthons in organic solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert, A. (1973) Ionization constants of pynmidines and purines. Synthetic Procedures in Nucleic Acid Chemistry, vol 2, Physical and Physicochemical Aids in Characterization and in Determination of Structure (Zorbach, W. W. and Tipson, R. S., eds.), Wiley-Interscience, New York, pp. 1–46

    Google Scholar 

  2. Hata, T. and Sekine, M. (1983) Synthesis of 2′-O-(l,3-benzodithiol-2-yl)uridine and related compounds as key intermediates in oligoribonucleotide synthesis. J. Org. Chem. 48, 3112–3114.

    Google Scholar 

  3. Gao, X., Gaffney, B. L., Senior, M., Riddle, R. R., and Jones, R. A. (1985) Methylation of thymine residues during oligonucleotide synthesis. Nucleic Acids Res. 13, 573–584.

    CAS  Google Scholar 

  4. Urdea, M. S., Ku, L., Horn, T., Gee, Y. G., and Warner, B. D. (1985) Base modification and clonmg efficiency of oligodeoxyribonucleotides synthesized by the phosphoramidite method: methyl versus cyanoethyl phosphorus protection. Nucl Acids Symp. Ser. 16, 257–260.

    CAS  Google Scholar 

  5. Andrus, A. and Beaucage, S. L. (1988) 2-Mercaptobenzothiazole: an improved reagent for the removal of methyl phosphate protecting groups from oligodeoxynucleotide phosphotriesters Tetrahedron Lett. 29, 5479–5482.

    CAS  Google Scholar 

  6. Ho, N. W Y and Gilham, P. T (1967) The reversible chemical modification of uracil, thymine, and guanine nucleotides and the modification of the action of ribonuclease on ribonucleic acid. Biochemistry 6, 3632–3639.

    CAS  Google Scholar 

  7. Astell, C. R. and Smith, M (1972) Synthesis and properties of oligonucle-otide-cellulose columns. Biochemistry 11, 4114–4120.

    CAS  Google Scholar 

  8. Schaller, H. and Khorana, H. G. (1963) Studies on polynucleotides. XXV. The stepwise synthesis of specific deoxyribopolynucleotides (5) Further studies on the synthesis of internucleotide bond by the carbodiimide method. The synthesis of suitably protected dmucleotides as intermediates in the synthesis of higher oligonucleotides J. Am. Chem Soc 85, 3828–3835

    CAS  Google Scholar 

  9. Reese, C. B. and Richards, K. H. (1985) Reaction between nucleoside base residues and the phosphorylating agent derived from 1-hydroxybenzotriazole and 2-chlorophenyl phosphodichloridate. Tetrahedron Lett. 26, 2245–2248.

    CAS  Google Scholar 

  10. Sung, W. L. (1981) Chemical conversion of thymidine into 5-methyl-2′-deoxycytidine. J Chem. Soc. Chem. Commun. 1981, 1089.

    Google Scholar 

  11. Sung, W. L. (1981) Synthesis of 4-triazolopyrimidone nucleotide and its application in synthesis of 5-methylcytosine containing oligodeoxyribonucleotides. Nucleic Acids Res. 9, 6139–6151.

    CAS  Google Scholar 

  12. Sung, W. L. (1982) Synthesis of 4-(l,2,4-triazol-l-yl)pyrimidin-2(lH)-one nbo-nucleotide and its application in synthesis of oligonbonucleotides J. Org. Chem. 47, 3623–3628.

    CAS  Google Scholar 

  13. Pless, R. C. and Letsmger, R. L. (1975) Solid support synthesis of oligo-thymidylates using phosphochloridates and 1-alkylimidazoles. Nucleic Acids Res. 2, 773–786.

    CAS  Google Scholar 

  14. Uhlmann, E. and Pfleiderer, W (1981) Nucleotide XIV Substituierte β-Phenyläthyl-Gruppen. Neue Schutzgruppen für Oligonucleotid-Synthesen nach dem Phosphosäuretriester-Verfahren, Helv. Chim. Acta 64, 1688–1703.

    CAS  Google Scholar 

  15. Adamiak, R. W., Biala, E., Gdaniec, Z, and Mielewczyk, S. (1986) Reactions of nucleoside heteroatomic lactam systems with 4-chlorophenylphosphoro-dichloridate and 1,2,4-triazole in pyridine. Chem. Scr. 26, 3–6.

    CAS  Google Scholar 

  16. Adamiak, R. W., Biala, E., Gdaniec, Z., and Mielewczyk, S. (1986) New observations on nucleophile assisted phosphorylations of nucleoside heteroatomic lactam systems during oligonucleotide synthesis. Chem. Scr. 26, 7–11.

    CAS  Google Scholar 

  17. Divakar, K. J. and Reese, C B. (1982) 4-(l,2,4-triazol-l-yl)-and 4-(3-nitro-l,2,4-triazol-l-yl)-l-(β-D-2,3,5-tri-O-acetylarabinofuranosyl)pyrimidin-2(lH)-ones. Valuable intermediates in the synthesis of derivatives of 1-(β-D-arabinofuranosyl)cytosine (Ara-C) J. Chem Soc. Perkin Trans. 1, 1171–1176.

    Google Scholar 

  18. Sung, W. L., and Narang, S. A. (1982) Modified phosphotriester method for chemical synthesis of riboologonucleotides. Part I. Synthesis of ribounde-caadenylate and two fragments constituting the sequence of R-17 translation control signal Can. J Chem. 60, 111–120.

    CAS  Google Scholar 

  19. Reese, C. B, and Ubasawa, A. (1980) Reaction between 1-arenesulphonyl-3-nitro-l,2,4-triazoles and nucleoside base residues Elucidation of the nature of side reactions during oligonucleotide synthesis. Tetrahedron Lett 21, 2265–2268.

    CAS  Google Scholar 

  20. Sekine, M. (1989) General method for the preparation of N3-and O4-sub-stituted uridine derivatives by phase-transfer reactions. J. Org. Chem. 54, 2321–2326.

    CAS  Google Scholar 

  21. Barone, A. D., Tang, J.-Y., and Caruthers, M. H. (1984) In situ activation of bis-dialkylaminophosphines. A new method for synthesizing deoxyoligonucleo-tides on polymer supports. Nucleic Acids Res. 12, 4051–4061.

    CAS  Google Scholar 

  22. Hata, T. and Sekine, M. (1974) Silyl phosphites. I. The reaction of silyl phosphites with diphenyl disulfide. Synthesis of S-phenyl nucleoside phosphoro-thioates. J. Am. Chem. Soc 96, 7363–7364.

    CAS  Google Scholar 

  23. Kamimura, T., Masegi, T., Sekine, M., and Hata, T. (1984) Structural assignment of N3-acylated uridine derivatives by means of 13C NMR spectroscopy Tetrahedron Lett. 25, 4241–4244.

    CAS  Google Scholar 

  24. den Hartog, J. A J, Wille, G., Scheublin, R A., and van Boom, J. H. (1982) Chemical synthesis of a messenger ribonucleic acid fragment: AUGUUCUU-CUUCUUCUUC Biochemistry 21, 1009–1018.

    Google Scholar 

  25. Mag, M. and Engels, J W. (1988) Synthesis and structure assignments of amide protected nucleosides and their use as phosphoramidites in deoxyoligonucleotide synthesis. Nucleic Acids Res. 16, 3525–3543.

    CAS  Google Scholar 

  26. Schott, H., v. Biedersee, H., von Sonntag, C, and Schulte-Frohlinde, D. (1986) Synthesis of homologues of deoxyribouridylic acid in preparative amounts using the triester method. Makromol. Chem. 187, 809–827.

    CAS  Google Scholar 

  27. Brown, J. M., Christodoulou, C, Jones, S. S., Modak, A. S, Reese, C. B., Sibanda, S., and Ubasawa, A. (1989) Synthesis of the 3′-terminal half of yeast alanine transfer ribonucleic acid (tRNAAla) by the phosphotriester approach in solution. Part 1. Preparation of the nucleoside building blocks. J. Chem. Soc. Perkin Trans 1, 1735–1750

    Google Scholar 

  28. Reese, C. B. and Skone, P. A. (1984) The protection of thymine and guanine residues in oligoribonucleotide synthesis. J. Chem. Soc. Perkin Trans. 1, 1263–1270.

    Google Scholar 

  29. Kamimura, T, Masegi, T., Urakami, K., Honda, S., Sekine, M., and Hata, T. (1983) A new protecting tactics for the uracil residue in oligoribonucleotide synthesis. Chem. Lett. 25, 1051–1054.

    Google Scholar 

  30. Welch, C. J. and Chattopadhyaya, J. (1983) 3-N-acyl uridines, preparation and properties of a new class of uracil protecting group. Acta Chem. Scand. B37, 147–150.

    CAS  Google Scholar 

  31. Inoue, H., Hayase, Y., Imura, A., Iwai, S., Miura, K., and Ohtsuka, E. (1987) Synthesis and hybridization studies on two complementary nona(2′-O-methyl)ribonucleotides. Nucleic Acids Res. 15, 6131–6148.

    CAS  Google Scholar 

  32. Sochacka, E. and Malkiewicz, A. (1990) The tRNA “wobble position” uridines. IV. The synthesis of 2′-O-methyl-5-methoxycarbonylmethyluridine and its derivatives. Nucleosides, Nucleotides 9, 793–802.

    CAS  Google Scholar 

  33. Sekine, M., Nishiyama, S., Kamimura, T., Osaki, Y., and Hata, T. (1985) Chemical synthesis of capped oligoribonucleotides, m7G5′pppAUG and m7G5′pppAUGACC. Bull. Chem. Soc. Jpn. 58, 850–860.

    CAS  Google Scholar 

  34. Sekine, M, Fujii, M, Nagai, H., and Hata, T. (1987) An improved synthesis of N3-benzoylthymidine. Synthesis 30, 1119–1121.

    Google Scholar 

  35. Zhou, X.-X. and Chattopadhyaya, J. (1986) Site-specific modification of the pyrimidine residue during the deprotection of the fully-protected diuridylic acid. Tetrahedron 42, 5149–5156.

    CAS  Google Scholar 

  36. Nyilas, A. and Chattopadhyaya, J. (1986) Synthesis of O2′-methyluridine, O2′-methylcytidine, N4, O2′-dimethylcytidine and N4, N4, O2′-trimethylcytidine from a common intermediate. Acta Chem. Scand. B40, 826–830.

    CAS  Google Scholar 

  37. Cruickshank, K. A., Jiricny, J., and Reese, C B. (1984) The benzoylation of uracil and thymine. Tetrahedron Lett. 25, 681–684.

    CAS  Google Scholar 

  38. Tanimura, H., Fukazawa, T., Sekine, M., Hata, T, Efcavitch, J. W., and Zon, G. (1988) The practical synthesis of RNA fragments in the solid phase approach. Tetrahedron Lett. 29, 577–578.

    CAS  Google Scholar 

  39. Sund, C. and Chattopadhyaya, J. (1989) Intra-and intermolecular nucleophihc phosphorus-sulfur bond cleavage. The reaction of fluoride ion with O-aryl-0,S-dialkylphosphorothioates, and the degradation of phosphorothioate linkage in di-ribonucleotides by the vicinal 2′-hydroxyl group. Tetrahedron 23, 7523–7544.

    Google Scholar 

  40. Takaku, H., Imai, K., and Nakayama, K. (1987) Synthesis of oligoribonu-cleotides by using 2′-O-(l-methyl-l-methoxy)ethyl nucleosides. Chem. Lett. 1987, 1787–1790.

    Google Scholar 

  41. Fujii, M., Horinouchi, Y., and Takaku, H. (1987) Use of the (butylthio)carbonyl group to protect uracil and guanine residues in oligoribonucleotide synthesis. Chem. Pharm Bull 35, 3066–3069

    CAS  Google Scholar 

  42. Kamimura, T., Masegi, T., and Hata, T. (1982) Protection of imide group of uracil moiety by means of 2,2,2-trichloro-tert-butyloxycarbonyl chloride: a selective synthesis of 2′-O-methyluridine. Chem. Lett. 1982, 965–968.

    Google Scholar 

  43. Zhou, X.-X., Ugi, I., and Chattopadhyaya, J. (1985) A convenient preparation of N-protected nucleosides with the 2,2,2-trichloro-t-butyloxycarbonyl (TCBOC) group. Structural assignment of N,N-bis-TCBOC guanoside and its 2′-deoxy analog. Acta Chem. Scand. B39, 761–765.

    CAS  Google Scholar 

  44. Jones, S. S., Reese, C. B., Sibanda, S., and Ubasawa, A. (1981) The protection of uracil and guanine residues in oligonucleotide synthesis Tetrahedron Lett 22, 4755–4758.

    CAS  Google Scholar 

  45. Zhou, X.-X., Welch, C J., and Chattopadhyaya, J. (1986) Pyridyl groups for protection of the imide functions of uridine and guanosine. Exploration of their displacement reactions for site-specific modifications of uracil and guanine bases. Acta Chem. Scand. B40, 806–816.

    CAS  Google Scholar 

  46. Welch, C. J., Zhou, X.-X., and Chattopadhyaya, J (1986) Synthesis of an mRNA fragment of Alanyl-tRNA synthetase gene in Escherichia coli using the 6-methyl-3-pyridyl group for protection of the imide functions of uridine and guanosine. Acta Chem. Scand. B40, 817–825.

    CAS  Google Scholar 

  47. Schulz, B. S. and Pfleiderer, W. (1983) Synthesis of O4-p-nitrophenylethyl thymidine and uridine derivatives. Tetrahedron Lett. 24, 3587–3590.

    CAS  Google Scholar 

  48. Himmelsbach, F., Schulz, B. S, Trichtinger, T, Charubala, R, and Pfleiderer, W. (1984) The p-nitrophenylethyl (NPE) group. A versatile new blocking group for phosphate and aglycone protection in nucleosides and nucleotides Tetrahedron 40, 59–72.

    CAS  Google Scholar 

  49. Borowy-Borowski, H. and Chambers, R. W. (1989) Solid-phase synthesis and side reactions of oligonucleotides containing O-alkylthymine residues Biochemistry 28, 1471–1477.

    CAS  Google Scholar 

  50. Xu, Y.-Z. and Swann, P F. (1990) A simple method for the solid phase synthesis of oligodeoxynucleotides containing O4′-alkylthymine. Nucleic Acids Res. 18, 4061–4065.

    CAS  Google Scholar 

  51. Takaku, H., Imai, K., and Nagai, M. (1988) Triphenylmethanesulfenyl group. A new protecting group for the uracil residue in oligoribonucleotide synthesis. Chem. Lett. 1988, 857–860.

    Google Scholar 

  52. Welch, C J., Bazin, H, Heikkilä, J., and Chattopadhyaya, J. (1985) Synthesis of C-5 and N-3 arenesulfenyl undines. Preparation and properties of a new class of uracil protecting group Acta Chem. Scand B39, 203–212.

    CAS  Google Scholar 

  53. Takaku, H., Ueda, S., and Ito, T. (1983) Methoxyethoxymethyl group for the protection of uracil residue in oligoribonucleotide synthesis. Tetrahedron Lett 24, 5363–5366.

    CAS  Google Scholar 

  54. Ito, T., Ueda, S., and Takaku, H. (1986) (Methoxyethoxy)methyl group: new amide and hydroxyl protecting groups of uridine in oligonucleotide synthesis. J. Org. Chem. 51, 931–933.

    CAS  Google Scholar 

  55. Sekine, M. and Hata, T. (1986) Synthesis of short oligoribonucleotides bearing a 3′-or 5′-termmal phosphate by use of 4,4′,4″-tris(4,5-dichlorophtaliniido)trityl as a new 5′-hydroxyl protecting group. J. Am. Chem. Soc. 108, 4581–4586.

    CAS  Google Scholar 

  56. Claesen, C. A A., Pistorius, A. M. A., and Tesser, G. I. (1985) One-step protection of the nucleoside base in thymme and uridine. Tetrahedron Lett. 26, 3859–3862. The structure proposed by these authors is incorrect. See ref. 21.

    CAS  Google Scholar 

  57. Sonveaux, E. (1986) The organic chemistry underlying DNA synthesis. Bioorg. Chem. 14, 274–325.

    CAS  Google Scholar 

  58. Gait, M. J, Matthes, H. W. D., Singh, M., Sproat, B. S., and Titmas, R. C. (1982) Synthesis of oligodeoxyribonucleotides by a continuous flow, phosphotriester method on a kieselguhr/polyamide support Chemical and Enzymatic Synthesis of Gene Fragments, a Laboratory Manual (Gassen, H. G. and Lang, A., eds.), Verlag Chemie, Weinheim, pp. 1–42.

    Google Scholar 

  59. Stemfeld, A. S., Naider, F., and Becker, J. M. (1979) A simple method for selective acylation of cytidines and cytosines under mild reaction conditions. J. Chem. Res. Synop. 1979, 129.

    Google Scholar 

  60. Igolen, J. and Morin, C. (1980) Rapid synthesis of protected 2′-deoxycytidine derivatives. J. Org. Chem. 45, 4802–4804.

    CAS  Google Scholar 

  61. Finlay, M., Debiard, J. P, Guy, A., Molko, D., and Teoule, R. (1983) An efficient one-pot synthesis of a fully protected 2′-deoxycy tidine 3′-monophosphate. Synthesis 1983, 303,304.

    Google Scholar 

  62. Hata, T. and Kurihara, T. (1973) The N-4-benzoylation of deoxycytidylic and cytidylic acids by means of 2-chloromethyl-4-nitrophenyl benzoate. Chem Lett. 1973, 859–862.

    Google Scholar 

  63. Watanabe, K. A. and Fox, J J. (1966) A simple method for selective acylation of cytidine on the 4-amino group Angew Chem. Intemat. Edit. 5, 579–580

    CAS  Google Scholar 

  64. Otter, B. A. and Fox, J J (1968) N-Acyl derivatives of 2′-deoxycytidine. The selective acylation of the 4-amino group of a cytosine nucleoside. Synthetic Procedures in Nucleic Acid Chemistry, vol 1, Preparation of Punnes, Pyrimidines. Nucleosides and Nucleotides (Zorbach, W. W. and Tipson, R. S., eds.), Wiley-Interscience, New York, pp. 285–287.

    Google Scholar 

  65. Bhat, V., Ugarkar, B. G., Sayeed, V. A, Grimm, K, Kosora, N., Domenico, P. A., and Stacker, E. (1989) A simple and convenient method for the selective N-acylations of cytosine nucleosides. Nucleosides, Nucleotides 8, 179–183.

    CAS  Google Scholar 

  66. Mishra, R. K and Misra, K. (1986) Improved synthesis of oligodeoxyribo-nucleotide using 3-methoxy-4-phenoxybenzoyl group for amino protection. Nucleic Acids Res. 14, 6197–6213.

    CAS  Google Scholar 

  67. Takaku, H., Shimada, Y., Monta, Y., and Hata, T. (1976) A convenient method for N4-benzoylation of cytidylic and deoxycytidylic acids by means of O-ethyl S-benzoyldithiocarbonate. Chem. Lett. 1976, 19–22

    Google Scholar 

  68. Himmelsbach, F. and Pfleiderer, W. (1983) The use of the p-nitrophenyl-ethoxycarbonyl group for amino protection in cytidme and adenosme chemistry. Tetrahedron Lett 24, 3583–3586.

    CAS  Google Scholar 

  69. Mercer, J. F. B. and Symons, R. H. (1971) The use of N-ethoxycarbonyl-2-ethoxy-l,2-dihydroquinoline in the selective N4-acylation of cytidine and its derivatives. Biochim. Biophys. Acta 238, 27–30.

    CAS  Google Scholar 

  70. Van Montagu, M., Molemans, F, and Stockx, J. (1968) Preparation of cytidine, cytidylic acids and ribonucleic acid specifically acetylated in the exocyclic amino group of cytosine. Bull. Soc. Chim. Belg 77, 171–180.

    Google Scholar 

  71. Anteunis, M. and Van Montagu, M. (1965) Locked acetyl group in N(6)-acetylcytidine. Bull. Chem. Soc Belg. 74, 481–487.

    CAS  Google Scholar 

  72. Heikkila, J. and Chattopadhyaya, J. (1983) The 9-fluorenylmethoxycarbonyl (Fmoc) group for the protection of amino functions of cytidine, adenosine, guanosine and their 2′-deoxysugar derivatives. Acta Chem. Scand. B37, 263–265

    Google Scholar 

  73. Schulhof, J. C, Molko, D., and Teoule, R. (1987) Facile removal of new base protecting groups useful in oligonucleotide synthesis. Tetrahedron Lett. 28, 51–54.

    CAS  Google Scholar 

  74. Schulhof, J. C, Molko, D., and Teoule, R. (1987) The final deprotection step in ohgonucleotide synthesis is reduced to a mild and rapid ammonia treatment by using labile base-protecting groups Nucleic Acids Res. 15, 397–416.

    CAS  Google Scholar 

  75. Wu, T. and Ogilvie, K. K. (1988) N-phenoxyacetylated guanosine and adenosine phosphoranudites in the solid phase synthesis of ohgoribonucleotides: synthesis of a ribozyme sequence. Tetrahedron Lett. 29, 4249–4252.

    CAS  Google Scholar 

  76. Ralph, R. K. and Khorana, H. G. (1960) Studies on polynucleotides. XI. Chemical polymerization of mononucleotides. The synthesis and characterization of deoxyadenosine polynucleotides. J. Am. Chem. Soc. 83, 2926–2934.

    Google Scholar 

  77. Koster, H., Kulikowski, K., Liese, T., Heikens, W., and Kohli, V (1981) N-acyl protecting groups for deoxynucleosides. A quantitative and comparative study. Tetrahedron 37, 363–369.

    Google Scholar 

  78. Wu, T., Ogilvie, K. K., and Pon, R. T. (1989) Prevention of chain cleavage in the chemical synthesis of 2′-silylated ohgoribonucleotides Nucleic Acids Res 17, 3501–3517.

    CAS  Google Scholar 

  79. Khorana, H G., Turner, A. F., and Vizsolyi, J. P (1961) Studies on polynucleotides. IX. Experiments on the polymerization of mononucleotides. Certain protected derivatives of deoxycytidine-5′ phosphate and the synthesis of deoxycytidine polynucleotides. J. Am. Chem. Soc. 83, 686–698.

    CAS  Google Scholar 

  80. Schaller, H., Weimann, G., Lerch, W. B., and Khorana, H. G. (1963) Studies on polynucleotides. XXIV. The stepwise synthesis of specific deoxyribo-polynucleotides (4) Protected derivatives of deoxyribonucleosides and new syntheses of deoxyribonucleoside-3′ phosphates. J Am. Chem. Soc. 85, 3821–3827.

    CAS  Google Scholar 

  81. Weber, H. and Khorana, H. G. (1972) Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Chemical synthesis of an icosadeoxynucleotide corresponding to the nucleotide sequence 21 to 40. J. Mol. Biol. 72, 219–249.

    CAS  Google Scholar 

  82. Goody, R. S. and Walker, R T. (1967) Some N-6 acylated cytosines. Tetrahedron Lett. 8, 289–291.

    Google Scholar 

  83. Goody, R. S. and Walker, R. T. (1971) The preparation and properties of some cytosine derivatives. J Org. Chem. 36, 727–730

    CAS  Google Scholar 

  84. Chaix, C, Molko, D., and Teoule, R. (1989) The use of labile base protecting groups in oligoribonucleotide synthesis. Tetrahedron Lett. 30, 71–74.

    CAS  Google Scholar 

  85. Agarwal, K. L., Yamazaki, A., Cashion, P. J., and Khorana, H. G. (1972) Chemical synthesis of polynucleotides Angew Chem Internal. Edit. 11, 451–550.

    CAS  Google Scholar 

  86. Ogilvie, K. K, Schifman, A. L, and Penney, C. L. (1979) The synthesis of oligoribonucleotides. III. The use of silyl protecting groups in nucleoside and nucleotide chemistry. VIII Can. J. Chem. 57, 2230–2238.

    CAS  Google Scholar 

  87. Ogilvie, K. K. and Entwistle, D. W. (1981) Isomerization of tert-butyldimethyl-silyl protecting groups in ribonucleosides. Carbohydr Res. 89, 203–210.

    CAS  Google Scholar 

  88. Letsinger, R. L and Miller, P. S. (1969) Protecting groups for nucleosides used in synthesizing oligonucleotides J. Am. Chem. Soc. 91, 3356–3359.

    CAS  Google Scholar 

  89. Ti, G. S, Gaffney, B L, and Jones, R. A (1982) Transient protection: efficient one-flask synthesis of protected deoxynucleosides. J. Am. Chem. Soc. 104, 1316–1319.

    CAS  Google Scholar 

  90. Kierzek, R. (1985) The synthesis of 5′-O-dimethoxytrityl-N-acyl-2′-deoxy-nucleosides. Improved “transient protection” approach. Nucleosides Nucleotides 4, 641–649

    CAS  Google Scholar 

  91. Guy, A., Ahmad, S., and Teoule, R (1990) Insertion of the fragile 2′-deoxyribosylurea residue into oligodeoxynucleotides. Tetrahedron Lett. 31, 5745–5748.

    CAS  Google Scholar 

  92. Piel, N., Benseler, F, Graeser, E., and McLaughlin, L. W. (1985) Synthesis of the oligodeoxyribonucleotide, d(CpTpGpGpApTpCpCpApG), and its substrate activity with the restriction endonuclease, BamHI. Bioorg. Chem 13, 323–334.

    CAS  Google Scholar 

  93. Dikshit, A., Chaddha, M, Singh, R. K., and Misra, K (1988) Naphthaloyl group a new selective amino protecting group for deoxynucleosides in oligonucleotide synthesis. Can. J. Chem. 66, 2989–2994

    CAS  Google Scholar 

  94. Dreef-Tromp, C. M., Hoogerhout, G. A, van der Marel, G. A., and van Boom, J. H. (1990) A new protecting group for exocyclic amino functions of nucleobases. Tetrahedron Lett. 31, 427–430

    CAS  Google Scholar 

  95. Kuijpers, W. H. A., Huskens, J., and van Boeckel, C. A. A. (1990) The 2-(acetoxymethyl)benzoyl (AMB) group as a new base-protecting group, designed for the protection of (phosphate) modified oligonucleotides. Tetrahedron Lett 31, 6729–6732

    CAS  Google Scholar 

  96. Ogilvie, K. K., Nemer, M. J., Hakimelahi, G. H., Proba, Z. A., and Lucas, M. (1982) N-levunylation of nucleosides. Tetrahedron Lett. 23, 2615–2618.

    CAS  Google Scholar 

  97. Koole, L. H., Moody, H. M., Broeders, N. L. H. L, Qaedflieg, P. J. L. M, Kuijpers, W H. A., van Genderen, M H P., Coenen, A J. J M., van der Wal, S., and Buck, H M. (1989) Synthesis of phosphate-methylated DNA fragments using 9-fluorenylmethoxycarbonyl as transient base protecting group J. Org. Chem. 54, 1657–1664.

    CAS  Google Scholar 

  98. Ueki, M. and Amemiya, M (1987) Removal of 9-fluorenylmethyl-oxycarbonyl (Fmoc) group with tetrabutylammonium fluoride. Tetrahedron Lett. 28, 6617–6620.

    CAS  Google Scholar 

  99. Atherton, E., Logan, C. J., and Sheppard, R. C (1981) Peptide synthesis. Part 2. Procedures for solid-phase synthesis using Nα-fluorenylmethoxycarbonylamino-acids on polyamide supports. Synthesis of substance P and of acyl carrier protein 65–74 decapeptide. J Chem. Soc. Perkin Trans. 1. 538–546.

    Google Scholar 

  100. Sabatier, J.-M., Tessier-Rochat, M, Granier, C, Van Rietschoten, J., Pedroso, E., Grandas, A., Albericio, F, and Giralt, E. (1987) Convergent solid phase peptide synthesis VI: synthesis by the FMOC procedure with a modified protocol of two protected segments, sequence 5–17 and 18–31 of the neurotoxin II of the scorpion Androctonus australis Hector. Tetrahedron 43, 5973–5980.

    CAS  Google Scholar 

  101. Happ, E., Scalfi-Happ, C, and Chladek, S. (1987) New approach to the synthesis of 2′(3′)-O-aminoacyl oligoribonucleotides J. Org. Chem. 52, 5387–5391

    CAS  Google Scholar 

  102. Webb, T and Matteuci, M. D. (1986) Hybridization triggered cross-linking of deoxyoligonucleotides Nucleic Acids Res. 14, 7661–7674.

    CAS  Google Scholar 

  103. Schneiderwind, R. G K. and Ugi, I (1983) Die 2,2,2-Trichlor-t-butyloxycarb-onyl-Gruppe, eine neue N-Schutzgruppe fur Oligonucleotidsynthesen. Tetra-hedron 39, 2201–2210.

    Google Scholar 

  104. Watkins, B. E. and Rapoport, H. (1982) Synthesis of benzyl and benzyloxy-carbonyl base-blocked 2′-deoxyribonucleosides J. Org. Chem. 47, 4471–4477.

    CAS  Google Scholar 

  105. Watkins, B. E., Kiely, J. S, and Rapoport, H. (1982) Synthesis of oligodeoxy-ribonucleotides using N-benzyloxycarbonyl-blocked nucleosides J. Am. Chem Soc. 104, 5702–5708.

    CAS  Google Scholar 

  106. Hayakawa, Y., Kato, H., Uchiyama, M., Kajino, H., and Noyori, R. (1986) Allyloxycarbonyl group a versatile blocking group for nucleotide synthesis. J Org. Chem. 51, 2400–2402

    CAS  Google Scholar 

  107. Hayakawa, Y., Wakabayashi, S., Kato, H., and Noyori, R. (1990) The allylic protection method in solid-phase oligonucleotide synthesis. An efficient preparation of solid-anchored DNA oligomers. J. Am. Chem. Soc. 112, 1691–1696.

    CAS  Google Scholar 

  108. Heikkila, J., Balgobin, N., and Chattopadhyaya, J. (1983) The 2-nitrophenyl-sulfenyl (Nps) group for the protection of amino functions of cytidine, adenosine, guanosine and their 2′-deoxysugar derivatives. Acta Chem. Scand. B37, 857–864.

    CAS  Google Scholar 

  109. McBride, L. J., Kierzek, R., Beaucage, S. L., and Caruthers, M. H. (1986) Amidine protecting groups for oligonucleotide synthesis. J. Am. Chem. Soc. 108, 2040–2048.

    CAS  Google Scholar 

  110. Vu, H., McCollum, C, Jacobson, K., Theisen, P., Vinayak, R., Spiess, E., and Andrus, A. (1990) Fast oligonucleotide deprotection phosphoramidite chemistry for DNA synthesis. Tetrahedron Lett. 31, 7269–7272.

    Google Scholar 

  111. Sekine, M, Masuda, N., and Hata, T. (1985) Introduction of the 4,4′,4″-tris(benzoyloxy)trityl group into the exo amino groups of deoxyribonucleosides and its properties. Tetrahedron 41, 5445–5453.

    CAS  Google Scholar 

  112. Sekine, M., Masuda, N., and Hata, T. (1986) Synthesis of oligodeoxy-ribonucleotides involving a rapid procedure for removal of base-protecting groups by use of the 4,4′,4″-tris(benzoyloxy)trityl (TBTr) group. Bull. Chem. Soc. Jpn. 59, 1781–1789

    CAS  Google Scholar 

  113. Honda, S., Terada, K, Sato, Y., Sekine, M., and Hata, T (1982) New type of prefabricated fully protected ribonucleotide monomer units as useful synthetic intermediates in rapid oligoribonucleotide synthesis Chem. Lett. 1982, 15–18.

    Google Scholar 

  114. Honda, S., Urakami, K, Koura, K., Terada, K., Sato, Y., Kohno, K., Sekine, M., and Hata, T. (1984) Synthesis of oligoribonucleotides by use of S,S-diphe-nyl N-monomethoxytrityl ribonucleoside 3′-phosphorodithioates. Tetrahedron 40, 153–163.

    CAS  Google Scholar 

  115. Zoltewicz, J. A., Clark, D. F, Sharpless, T W., and Grahe, G. (1970) Kinetics and mechanism of the acid-catalyzed hydrolysis of some purine nucleosides. J. Am. Chem. Soc. 92, 1741–1750.

    CAS  Google Scholar 

  116. Zoltewicz, J. A. and Clark, D. F. (1972) Kinetics and mechanism of the hydrolysis of guanosine and 7-methylguanosine nucleosides in perchloric acid. J. Org. Chem. 37, 1193–1197.

    CAS  Google Scholar 

  117. Panzica, R P, Rousseau, R J., Robins, R. K., and Townsend, L. B. (1972) A study on the relative stability and a quantitative approach to the reaction mechanism of the acid-catalyzed hydrolysis of certain 7-and 9-P-D-ribofur-anosylpurines J. Am Chem Soc. 94, 4708–4714

    CAS  Google Scholar 

  118. Hevesi, L., Wolfson-Davidson, E., Nagy, J. B., Nagy, O. B., and Bruylants, A (1972) Contribution to the mechanism of the acid-catalyzed hydrolysis of purine nucleosides. J. Am Chem. Soc. 94, 4715–4720.

    CAS  Google Scholar 

  119. Jordan, F, and Niv, H. (1977) Glycosyl conformational and inductive effects on the acid catalysed hydrolysis of purine nucleosides. Nucleic Acids Res. 4, 697–709

    CAS  Google Scholar 

  120. Lönnberg, H. and Heikkinen, E. (1984) Mechanisms for the solvolytic decompositions of nucleoside analogs. XI. Competitive pathways for the acidic hydrolysis of 9-(β-D-ribofuranosyI)purine. Acta Chem. Scand. B38, 613–611.

    Google Scholar 

  121. For a review, see Zielonacka-Lis, E. (1989) The acidic hydrolysis of nucleosides and nucleotides. Nucleosides, Nucleotides 8, 383–405.

    CAS  Google Scholar 

  122. York, J. L. (1981) Effect of the structure of the glycon on the acid-catalyzed hydrolysis of adenine nucleosides. J. Org. Chem. 46, 2171–2173.

    CAS  Google Scholar 

  123. Tanaka, T. and Letsinger, R. L. (1982) Syringe method for stepwise chemical synthesis of oligonucleotides. Nucleic Acids Res. 10, 3249–3260.

    CAS  Google Scholar 

  124. Miyoshi, K., Huang, T, and Itakura, K. (1980) Solid-phase synthesis of polynucleotides. III. Synthesis of polynucleotides with defined sequences by the block coupling phosphotriester method. Nucleic Acids Res. 8, 5491–5505.

    CAS  Google Scholar 

  125. Itaya, T. and Harada, T. (1984) Hydrolysis of nucleosides related to tyrosine. J. Chem. Sac. Chem Commun. 1984, 858–859

    Google Scholar 

  126. Remaud, G., Zhou, X.-X., Chattopadhyaya, J., Oivanen, M, and Lonnberg, H. (1987) The effect of protecting groups of the nucleobase and the sugar moieties on the acidic hydrolysis of the glycosidic bond of 2′-deoxyadenosine: a kinetic and 15N NMR spectroscopic study. Tetrahedron 43, 4453–4461.

    CAS  Google Scholar 

  127. Blank, H.-U., Frahne, D., Myles, A., and Pfleiderer, W. (1970) Über die Tritylierung und Benzylierung von Adenosin-Derivaten. Liebigs Ann. Chem 742, 34–42.

    CAS  Google Scholar 

  128. Barton, J. K. and Lippard, S. J. (1980) Heavy metal interactions with nucleic acids. Nucleic Acid-Metal Ion Interactions (Spiro, T. G., ed.), Wiley, New York, pp. 32–113.

    Google Scholar 

  129. Benoit, R. L. and Frechette, M (1984) Protonation de l’adénine, de la purine et de l’adénosine en milieu acide fort. Can. J. Chem. 62, 995–1000.

    CAS  Google Scholar 

  130. Caruthers, M. H., McBride, L. J, Bracco, L. P., and Dubendorff, J. W. (1985) Studies on nucleotide chemistry 15. Synthesis of oligodeoxynucleotides using amidine protected nucleosides. Nucleosides, Nucleotides 4, 95–105.

    CAS  Google Scholar 

  131. Kume, A., Sekine, M., and Hata, T. (1982) Phthaloyl group: a new amino protecting group of deoxyadenosine in oligonucleotide synthesis. Tetrahedron Lett. 23, 4365–4368.

    CAS  Google Scholar 

  132. Kume, A., Sekine, M., and Hata, T (1983) Further improvements of oligo-deoxyribonucleotides synthesis: synthesis of tetradeoxy adenylate on a new silica gel support using N6-phthaloyldeoxyadenosine. Chem. Lett. 1983, 1597–1600.

    Google Scholar 

  133. McBride, L. J. and Caruthers, M H. (1983) N6(N-methyl-2-pyrrolidine amidine) deoxyadenosine—a new deoxynucleoside protecting group. Tetrahedron Lett. 24, 2953–2956.

    CAS  Google Scholar 

  134. Froehler, B. C. and Matteuci, M D (1983) Dialkylformamidines: depurination resistant N6-protecting group for deoxyadenosine. Nucleic Acids Res 11, 8031–8036.

    CAS  Google Scholar 

  135. Lindhal, T. and Andersson, A. (1972) Rate of chain breakage at apurmic sites in double-stranded deoxyribonucleic acid. Biochemistry 11, 3618–3623.

    Google Scholar 

  136. Vasseur, J.-J., Rayner, B., Imbach, J.-L., Verma, S., McCloskey, J A, Lee, M., Chang, D-K., and Lown, J. W. (1987) Structure of the adduct formed between 3-aminocarbazole and the apurinic site oligonucleotide model d[Tp(Ap)pT]. J. Org. Chem. 52, 4994–4998.

    CAS  Google Scholar 

  137. Horn, T. and Urdea, M. S. (1988) Solid supported hydrolysis of apurinic sites in synthetic oligonucleotides for rapid and efficient purification on reverse-phase cartridges. Nucleic Acids Res. 16, 11,559–11,571

    CAS  Google Scholar 

  138. See also the brief note by Efcavitch, J. W. and Heiner, C. (1985) Depurination as a yield decreasing mechanism in oligodeoxynucleotide synthesis. Nucleosides, Nucleotides4, 267.

    Google Scholar 

  139. Gait, M. J., Popov, S. G., Singh, M., and Titmas, R. C. (1980) Rapid synthesis of oligodeoxyribonucleotides V. Further studies in solid phase synthesis of oligodeoxyribonucleotides through phosphotriester intermediates. Nucl. Acids Symp. Ser 7, 243–257.

    CAS  Google Scholar 

  140. Patel, T. P., Millican, T. A., Bose, C C, Titmas, R. C, Mock, G. A., and Eaton, M A. W. (1982) Improvements to solid phase phosphotriester synthesis of deoxyoligonucleotides. Nucleic Acids Res. 10, 5605–5620.

    CAS  Google Scholar 

  141. Anzai, K., Hunt, J. B., Zon, G, and Egan, W. (1982) Reactions of ethyl and phenyl chloroformate with adenosine derivatives as an entry to N6-ureido-linked spin-labeled adenosine and other modified adenosines. J. Org. Chem. 47, 4281–4285.

    CAS  Google Scholar 

  142. Anzai, K. and Uzawa, J. (1984) Cyclonucleoside formation and ring cleavage in the reaction of 2′,3′-O-isopropylideneadenosine with benzoyl chloride and its substituted derivatives. J. Org. Chem. 49, 5076–5080

    CAS  Google Scholar 

  143. Lyon, P. A and Reese, C B (1978) Reaction between 2′,3′,5′-tri-O-acetyl-adenosine and aryl chloroformates. 2′,3′,5′-tri-O-acetyl-N(6)-phenoxycarbonyl-adenosine as an intermediate in the synthesis of 6-ureidopurine ribosides. J. Chem. Soc. Perkin Trans. 1, 131–137.

    Google Scholar 

  144. Himmelsbach, F. and Pfleiderer, W. (1983) The use of the p-nitrophenylethoxy-carbonyl group for amino protection in cytidine and adenosine chemistry. Tetrahedron Lett. 24, 3583–3586.

    CAS  Google Scholar 

  145. Nishino, S., Takamura, H., and Ishido, Y. (1986) Regioselective protection of carbohydrate derivatives. Part 20. Simple, efficient 2′-O-deacylation of fully acylated purine and pynmidine ribonucleosides through tert-butoxide. Tetrahedron 42, 1995–2004.

    CAS  Google Scholar 

  146. Takaku, H., Morita, K., and Sumiuchi, T. (1983) Selective removal of terminal dimethoxytrityl groups. Chem. Lett. 1983, 1661–1664.

    Google Scholar 

  147. Sproat, B. S. and Gait, M. J. (1985) Chemical synthesis of agene for somatomedin C. Nucleic Acids Res. 13, 2959–2977.

    CAS  Google Scholar 

  148. Sproat, B. S and Brown, D. M. (1985) A new linkage for solid phase synthesis of oligodeoxyribonucleotides. Nucleic Acids Res. 13, 2979–2987.

    CAS  Google Scholar 

  149. Kume, A., Iwase, R., Sekine, M., and Hata, T. (1984) Cyclic diacyl groups for protection of N6-amino group of deoxyadenosine in oligodeoxynucleotide synthesis. Nucleic Acids Res. 12, 8525–8538.

    CAS  Google Scholar 

  150. Anzai, K., and Uzawa, J. (1986) Acyl migration from N6 to N7 of a 2′, 3′-O-isopropylideneadenosine derivative accompanied by cyclonucleoside formation. Can. J. Chem Soc. 64, 2109–2114.

    CAS  Google Scholar 

  151. Jones, A. S., Mian, A. M., and Walker, R. T. (1966) The action of alkali on some purines and their derivatives. J. Chem. Soc. (C) 1966, 692–695.

    Google Scholar 

  152. Garrett, E. R. and Mehta, P. J. (1972) Solvolysis of adenine nucleosides. II. Effects of sugars and adenine substituents on alkaline solvolyses. J. Am. Chem. Soc. 94, 8542–8547.

    CAS  Google Scholar 

  153. Lehikoinen, P., Mattinen, J., and Lönnberg, H. (1986) Reactions of adenine nucleosides with aqueous alkalies: kinetics and mechanism. J. Org. Chem. 51, 3819–3823.

    CAS  Google Scholar 

  154. Gordon, M. P., Weliky, V. S., and Brown, G. B. (1957) A study of the action of acid and alkali on certain purines and purine nucleosides. J. Chem. Soc. 79, 3245–3251.

    CAS  Google Scholar 

  155. Magrath, D. I. and Brown, G. B. (1957) The synthesis of 9-β-D-ribofur-anosylpurine-5′-phosphate and its behavior toward aqueous alkali. J. Am. Chem. Soc. 79, 3252–3255.

    CAS  Google Scholar 

  156. Montgomery, J. A and Thomas, H. J. (1971) A new approach to the synthesis of nucleosides of 8-azapurines (3-glycosyl-v-triazolo[4,5-d]pyrimidines) J Org. Chem. 36, 1962–1967.

    CAS  Google Scholar 

  157. Lonnberg, H. and Lehikoinen, P. (1984) Reaction of 9-(β-D-ribofur-anosyl)purine with alkalies: kinetics and mechanism. J Org. Chem. 49, 4964–4969.

    Google Scholar 

  158. Tener, G. M. (1961) 2-Cyanoethyl phosphate and its use in the synthesis of phosphate esters J. Am. Chem. Soc. 83, 159–168.

    CAS  Google Scholar 

  159. Charubala, R. and Pfleiderer, W. (1981) Nucleotides, XIII: phosphorylations of adenosine and 2′-deoxyadenosine by phosphorochloridates. Heterocycles 15, 761–776.

    CAS  Google Scholar 

  160. Finnan, J. L., Varshney, A., and Letsinger, R. L. (1980) Developments in the phosphite-triester method of synthesis of oligonucleotides. Nucl. Acids Symp. Ser. 7, 133–145.

    CAS  Google Scholar 

  161. Imai, J. and Torrence, P. F. (1981) Bis(2,2,2-trichloroethyl) phosphorochloridite as a reagent for the phosphorylation of oligonucleotides: preparation of 5′-phos-phorylated 2′,5′-oligoadenylates. J. Org. Chem. 46, 4015–4021

    CAS  Google Scholar 

  162. Fourrey, J.-L. and Varenne, J. (1985) Preparation and phosphorylation reactivity of N-nonacylated nucleoside phosphoramidites. Tetrahedron Lett. 26, 2663–2666.

    CAS  Google Scholar 

  163. Narang, S. A., Itakura, K., and Wightman, R. H. (1972) A simplification in the synthesis of deoxynbooligonucleotides Can. J. Chem. 50, 769–770.

    CAS  Google Scholar 

  164. Adamiak, R. W., Biala, E., Grzekowiak, K., Kierzek, R., Kraszewski, A., Markiewicz, W. T., Okupniak, J., Stawinski, J., and Wiewiorowski, M. (1978) The chemical synthesis of the anticodon loop of an eukaryotic initiator tRNA containing the hypermodified nucleoside N6-/N-threonylcarbonyl/-adenosine/ t6A/1. Nucleic Acids Res. 5, 1889–1905.

    CAS  Google Scholar 

  165. Hayakawa, Y., Uchiyama, M., Nobori, T., and Noyori, R. (1984) A convenient synthesis of adenylyl-(2′–5′)-adenylyl-(2′–5′)-adenosine (2–5A core) Nucl. Acids Symp. Ser 15, 85–88

    CAS  Google Scholar 

  166. Balgobin, N., Josephson, S., and Chattopadhyaya, J. B. (1981) A general approach to the chemical synthesis of oligodeoxyribonucleotides. Acta Chem. Scand. B35, 201–212.

    CAS  Google Scholar 

  167. Letsinger, R. L., Miller, P. S., and Grams, G. W. (1968) Selective N-debenz-oylation of N,O-polybenzoylnucleosides. Tetrahedron Lett. 9, 2621–2624.

    Google Scholar 

  168. Urdea, M. S. and Horn, T. (1986) Solid-supported synthesis, deprotection and enzymatic purification of oligodeoxyribonucleotides. Tetrahedron Lett. 27, 2933–2936.

    CAS  Google Scholar 

  169. van Boom, J. H. and Burgers, P. M. J. (1976) Use of levulinic acid in the protection of oligonucleotides via the modified phosphotriester method: synthesis of decaribonucleotide UAUAUAUAUA. Tetrahedron Lett. 17, 4875–4878.

    Google Scholar 

  170. Brown, E. L., Belagaje, R., Ryan, M. J., and Khorana, H. G. (1979) Chemical synthesis and cloning of a tyrosine tRNA gene. Methods in Enzymology, vol. 68, Recombinant DNA (Wu, R., ed.). Academic, New York, pp. 109–151.

    Google Scholar 

  171. Chattopadhyaya, J. B. and Reese, C. B. (1980) Chemical synthesis of a tridecanucleoside dodecaphosphate sequence of SV40DNA. Nucleic Acids Res. 8, 2039–2053.

    CAS  Google Scholar 

  172. Schneiderwind, R. G. K. and Ugi, I. (1981) Die 2,2,2-Trichlor-tert-butyloxycarbonyl-Gruppe als N-Schutzgruppe bei Oligonukleotidsynthesen. Z. Naturforsch. B: Chem. Sci. 363, 1173–1175.

    Google Scholar 

  173. Kamimura, T., Tsuchiya, M., Urakami, K., Koura, K., Sekine, M., Shinozaki, K., Miura, K., and Hata, T. (1984) Synthesis of a dodecaribonucleotide, GUAUCAAUAAUG, by use of “fully” protected ribonucleotide building blocks. J. Am. Chem. Soc. 106, 4552–4557.

    CAS  Google Scholar 

  174. Kuijpers, W. H. A., Huskens, J., Koole, L. H., and van Boeckel, C. A. A. (1990) Synthesis of well-defined phosphate-methylated DNA fragments: the application of potassium carbonate in methanol as deprotecting reagent. Nucleic Acids Res. 18, 5197–5205.

    CAS  Google Scholar 

  175. Bridson, P. K., Markiewicz, W. T., and Reese, C. B. (1977) Acylation of 2′,3′,5′-tri-O-acetylguanosine. J. Chem. Soc. Chem. Commun. 1977, 791, 792.

    Google Scholar 

  176. Robins, M. J. and Uznanski, B. (1981) Nucleic acid related compounds. 33. Conversions of adenosine and guanosine to 2,6-dichloro, 2-amino-6-chloro, and derived purine nucleosides. Can. J. Chem. 59, 2601–2607.

    CAS  Google Scholar 

  177. Matsuda, A., Shinozaki, M., Suzuki, M., Watanabe, K., and Miyasaka, T. (1986) A convenient method for the selective acylation of guanine nucleosides. Synthesis 1986, 385–386.

    Google Scholar 

  178. Büchi, H. and Khorana, H. G. (1972) Total synthesis of the structural gene of an alanine transfer ribonucleic acid from yeast. Chemical synthesis of an ico-sadeoxyribonucleotide corresponding to the nucleotide sequence 31 to 50. J. Mol. Biol. 72, 251–288.

    Google Scholar 

  179. Benseler, F. and McLaughlin, L. W. (1986) An improved procedure for the protection of 2′-deoxyguanosine Synthesis 1986, 45,46.

    Google Scholar 

  180. Marugg, J E., Tromp, M., Jhurani, P., Hoyng, C F., Van der Marel, G. A., and van Boom, J, H. (1984) Synthesis of DNA fragments by the hydroxybenz-otriazole phosphotriester approach. Tetrahedron 40, 73–78.

    CAS  Google Scholar 

  181. Takaku, H., Ito, T., and Imai, K. (1986) Use of 3,4-dimethoxybenzyl group as a protecting group for the 2′-hydroxyl group in the synthesis of oligoribo-nucleotides Chem. Lett. 1986, 1005–1008.

    Google Scholar 

  182. Borowy-Borowski, H. and Chambers, R. W (1987) A study of side reactions occuring during synthesis of oligodeoxynucleotides containing O6-alkyldeoxyguanosine residues at preselected sites. Biochemistry 26, 2465–2471.

    CAS  Google Scholar 

  183. Reese, C. B. (1978) The chemical synthesis of oligo-and poly-nucleotides by the phosphotnester approach. Tetrahedron 34, 3143–3179.

    CAS  Google Scholar 

  184. Daskalov, H P, Sekine, M., and Hata, T. (1980) New guanosine derivatives facile O6-phosphorylation, thiophosphinylation, sulfonylation and silylation of guanosine derivatives by 4-dimethylaminopyridine catalized reaction. Tetrahedron Lett. 21, 3899–3902.

    CAS  Google Scholar 

  185. Daskalov, H. P., Sekine, M., and Hata, T. (1981) Synthesis and properties of O6-substituted guanosine derivatives. Bull. Chem Sac. Jpn. 54, 3076–3083

    CAS  Google Scholar 

  186. Takaku, H., Kamaike, K, and Kasuga, K. (1982) 4-Chlorophenyl 5-chloro-8-quinolyl hydrogen phosphate: a useful phosphorylating agent for guanosine 3′-phosphotriester. Chem. Lett. 1982, 197–200.

    Google Scholar 

  187. Sekine, M., Matsuzaki, J., Satoh, M., and Hata, T. (1982) Improved 3′-O-phos-phorylation of guanosine derivatives by O6-oxygen protection. J. Org. Chem. 47, 571–573.

    CAS  Google Scholar 

  188. Gaffney, B. L. and Jones, R. A. (1982) Synthesis of O-6-alkylated deoxyguan-osine nucleosides. Tetrahedron Lett. 23, 2253–2256

    Google Scholar 

  189. Gaffney, B. L., Marky, L A., and Jones, R A. (1984) The influence of the purine 2-amino group on DNA conformation and stability, II. Synthesis and physical characterization of d[CGT(2-NH2)ACG], d[CGU(2-NH2)ACG], and d[CGT(2-NH2)AT(2-NH2)ACG]. Tetrahedron 40, 3–13

    CAS  Google Scholar 

  190. Sekine, M, Matsuzaki, J., and Hata, T. (1985) Oligodeoxyribonucleotide synthesis by use of S,S-diphenyl deoxyribonucleoside 3′-phosphorodithioates and bifunctional condensing reagents in the phosphotnester approach. Tetrahedron 41, 5279–5288.

    CAS  Google Scholar 

  191. Adamiak, R. W., Biala, E., and Skalski, B. (1985) Synthesis of 6-substituted purines and ribonucleosides with N-(6-purinyl)pyridinium salts. Angew Chem. Intemat. Edit. 24, 1054,1055.

    Google Scholar 

  192. Gdaniec, Z., Mielewczyk, S., and Adamiak, R. W (1988) Synthesis and carbon-13 magnetic resonance spectra of pyridinium salts derived from nucleosides and nucleobases. Heterocycles 27, 2807–2814.

    CAS  Google Scholar 

  193. François, P., Hamoir, G., Sonveaux, E., Vermeersch, H., and Ma, Y. (1985) On the phosphorylation of deoxynbonucleosides and the protection of deoxy-guanosine. Bull. Sac. Chim. Belg. 94, 821–823

    Google Scholar 

  194. Pon, R. T., Damha, M. J., and Ogilvie, K. K. (1985) Necessary protection of the O6-position of guanine during the solid phase synthesis of oligonucleotides by the phosphoramidite approach. Tetrahedron Lett. 26, 2525–2528.

    CAS  Google Scholar 

  195. Damha, M. J. and Ogilvie, K. K. (1986) Modification of guanine bases: reaction of N2-acylated guanine nucleosides with dichloro-(N,N-diisopropylamino) phosphine. J. Org. Chem. 51, 3559,3560.

    CAS  Google Scholar 

  196. Nielsen, J., Taagaard, M., Marugg, J. E., van Boom, J. H., and Dahl, O. (1986) Application of 2-cyanoethyl N,N,N′,N′-tetraisopropylphosphorodiamidite for in situ preparation of deoxyribonucleoside phosphoramidites and their use in polymer-supported synthesis of oligodeoxyribonucleotides. Nucleic Acids Res. 14, 7391–7403

    CAS  Google Scholar 

  197. Nielsen, J., Dahl, O, Remaud, G., and Chattopadhyaya, J. (1987) Phosphitylation of guanine or inosine bases during the preparation of nucleoside phosphoramidites. Isolation of model products as thiophosphoric amide derivatives and structure elucidation by 15N NMR spectroscopy. Acta Chem. Scand. B41, 633–639.

    CAS  Google Scholar 

  198. Pon, R. T., Damha, M. J., and Ogilvie, K. K. (1985) Modification of guanine bases by nucleoside phosphoramidite reagents during the solid phase synthesis of oligonucleotides. Nucleic Acids Res. 13, 6447–6465.

    CAS  Google Scholar 

  199. Pon, R T., Usman, N., Damha, M. J., and Ogilvie, K K. (1986) Prevention of guanine modification and chain cleavage during the solid phase synthesis of oligonucleotides using phosphoramidite derivatives. Nucleic Acids Res. 14, 6453–6470

    CAS  Google Scholar 

  200. Eadie, J. S. and Davidson, D S. (1987) Guanine modification during chemical DNA synthesis. Nucleic Acids Res. 15, 8333–8349.

    CAS  Google Scholar 

  201. Yeung, A. T., Dinehart, W. J., and Jones, B. K. (1988) Modifications of guanine bases during ohgonucleotide synthesis. Nucleic Acids Res. 16, 4539–4554.

    CAS  Google Scholar 

  202. Zhou, X.-X., Sandstrom, A., and Chattopadhyaya, J. (1986) A convenient preparation of 2-N-(4-t-butylbenzoyl)-6-O-(2-nitrophenyl)guanosine and its application in the synthesis of 5′(GpGpGpU)3′ constituting the 3′-anticodon stem of E. coli tRNAIle. Chem. Scr. 26, 241–249.

    CAS  Google Scholar 

  203. Ogilvie, K. K., Usman, N., Nicoghosian, K., and Cedergren, R. J. (1988) Total chemical synthesis of a 77-nucleotide-long RNA sequence having methionine-acceptance activity. Proc. Natl. Acad. Sci. USA 85, 5764–5768

    CAS  Google Scholar 

  204. Hagen, M. D. and Chladek, S. (1989) General synthesis of 2′(3′)-O-aminoacyl oligoribonucleotides. The protection of the guanine moiety J. Org Chem. 54, 3189–3195.

    CAS  Google Scholar 

  205. Kamimura, T, Tsuchiya, M., Koura, K., Sekine, M., and Hata, T. (1983) Diphenylcarbamoyl and propionyl groups: a new combination of protecting groups for the guanine residue. Tetrahedron Lett. 24, 2775–2778.

    CAS  Google Scholar 

  206. Kwiatkowski, M, Heikkila, J., Bjdrkman, S., and Chattopadhyaya, J. (1983) Chemical synthesis of an undecaribonucleoside decaphosphate constituting the 3′-terminal acceptor stem sequence of yeast tRNAPhe. Chem Scr. 22, 30–48.

    CAS  Google Scholar 

  207. den Hartog, J. A J., Wille, G, and van Boom, J. H (1981) Synthesis of oligoribonucleotides with sequences identical to the nucleation region of Tobacco Mosaic Virus RNA: preparation of AAG, AAGAAG and AAGAAGUUG via phosphotriester methods. Recl. Trav. Chim. Pays-Bos 100, 320–330.

    Google Scholar 

  208. Fujii, M., Yamakage, S., Takaku, H., and Hata, T. (1987) (Butylthio)carbonyl group: a new protecting group for the guanine residue in oligoribonucleotide synthesis. Tetrahedron Lett. 28, 5713–5716.

    CAS  Google Scholar 

  209. Hata, T., Sekine, M, Honda, S., and Kamimura, T. (1980) A new approach to the synthesis of oligoribonucleotides bearing ‘cap’ structure. Nucl. Acids Symp Ser. 7, 151–155.

    CAS  Google Scholar 

  210. Shimidzu, T and Letsinger, R. L. (1968) Synthesis of deoxyguanylyl-deoxyguanosine on an insoluble polymer support J Org. Chem. 33, 708–711

    CAS  Google Scholar 

  211. Tanimura, H., Sekine, M., and Hata, T. (1986) An effective method for the preparation of O6-substituted guanosine and N3-substituted uridine derivatives via the corresponding stannylated intermediates. Tetrahedron Lett. 27, 4047–4050.

    CAS  Google Scholar 

  212. Gaffney, B L and Jones, R A. (1982) A new strategy for the protection of deoxyguanosine during oligonucleotide synthesis. Tetrahedron Lett 23, 2257–2260.

    CAS  Google Scholar 

  213. Gao, X., Gaffney, B. L., Hadden, S., and Jones, R. A (1986) Transient protection 2. One-flask synthesis of 6-O-[(4-nitrophenyl)ethyl]-2′-deoxyguanosine nucleosides. J. Org. Chem. 51, 755–758.

    CAS  Google Scholar 

  214. Chollet, A., Ayala, E., and Kawashima, E. H. (1984) Improved synthesis of oligodeoxyribonucleotides by solid-phase phosphotriester method utilizing O6-[2-(p-nitrophenyl)ethyl]-2′-deoxyguanosine derivatives. Helv. Chim. Acta 67, 1356–1364.

    CAS  Google Scholar 

  215. Trichtinger, T., Charubala, R., and Pfleiderer, W (1983) Synthesis of O6-p-nitrophenylethyl guanosine and 2′-deoxyguanosine derivatives. Tetrahedron Lett. 24, 711–714

    CAS  Google Scholar 

  216. Kuzmich, S., Marky, L. A., and Jones, R. A. (1983) Specifically alkylated DNA fragments. Synthesis and physical characterization of d[CGC(O6Me)GCG] and d[CGT(O6Me)GCG] Nucleic Acids Res. 11, 3393–3404.

    CAS  Google Scholar 

  217. Kuzmich, S., Marky, L. A., and Jones, R. A. (1983) Synthesis and physical characterization of the self-complementary, alternating pyrimidine/purine hexanucleotide d[CGTACG]. Nucleic Acids Res. 10, 6265–6271.

    Google Scholar 

  218. Sekine, M., Matsuzaki, J., and Hata, T. (1982) A new type of protection mode for the guanine residue by using 1,2-diisobutyryloxyethylene group. Tetrahedron Lett. 23, 5287–5290

    CAS  Google Scholar 

  219. Matsuzaki, J., Kohno, K., Tahara, S, Sekine, M, and Hata, T. (1987) Solid phase synthesis of oligodeoxyribonucleotides utilizing the phenylthio group as a phosphate protecting group. Bull. Chem. Sac. Jpn. 60, 1407–1413.

    CAS  Google Scholar 

  220. Reese, C. B. and Skone, P. A. (1985) Action of acid on oligoribonucleotide phosphotriester intermediates. Effect of released vicinal hydroxy functions Nucleic Acids Res. 13, 5215–5231.

    CAS  Google Scholar 

  221. Griffin, B. E, Jarman, M, and Reese, C B. (1968) The synthesis of oligo-ribonucleotides-IV Preparation of dinucleoside phosphates from 2′,5′-protected ribonucleoside derivatives. Tetrahedron 24, 639–662.

    CAS  Google Scholar 

  222. de Rooij, J F. M., Wille-Hazeleger, G., Burgers, P. M J., and van Boom, J. H. (1979) Neighbouring group participation in the unblocking of phosphotriesters of nucleic acids Nucleic Acids Res. 6, 2237–2258.

    Google Scholar 

  223. Brown, D. M., Magrath, D. I., Neilson, A. H., and Todd, A. R. (1956) Hydrolysis of esters of monoribonucleotides. Nature 177, 1124,1125.

    Google Scholar 

  224. Pathak, T. and Chattopadhyaya, J. (1985) The 2′-hydroxyl function assisted cleavage of the mternucleotide phosphotriester bond of a ribonucleotide under acidic conditions. Acta Chem. Scand. B39, 799–806.

    Google Scholar 

  225. Taira, K. (1987) Stereoelectronic control in the hydrolysis of RNA by imidazole. Bull Chem. Soc. Jpn. 60, 1903–1909.

    CAS  Google Scholar 

  226. Reese, C. B. and Trentham, D. R. (1965) Acyl migration m ribonucleoside derivatives. Tetrahedron Lett. 6, 2467–2472.

    Google Scholar 

  227. Rammler, D. H. and Khorana, H. G. (1962) Studies on polynucleotides. XVI. Specific synthesis of the C3′-C5′ interribonucleotidic linkage. Examination of routes involving protected ribonucleosides and ribonucleoside-3′ phosphates. Syntheses of uridylyl-(3′–5′)-adenosine, undylyl-(3′–5′)cytidine, adenylyl-(3′–5′)-adenosine and related compounds. J. Am Chem. Soc. 84, 3112–3122

    CAS  Google Scholar 

  228. Rammler, D. H. and Khorana, H. G. (1962) Studies on polynucleotides, XX. Amino acid acceptor ribonucleic acids (1) The synthesis and properties of 2′(or 3′)-O-(DL-phenylalanyl)-adenosine, 2′(or 3′)-O-(DL-phenylalanyl)-undine and related compounds. J. Am. Chem. Soc. 85, 1997–2002.

    Google Scholar 

  229. Kempe, T., Chow, F., Sundquist, W. I., Nardi, T. J., Paulson, B, and Peterson, S M. (1982) Selective 2′-benzoylation at the cis 2′,3′-diols of protected ribonucleosides. New solid phase synthesis of RNA and DNA-RNA mixtures. Nucleic Acids Res. 10, 6695–6714.

    CAS  Google Scholar 

  230. Norman, D G., Reese, C. B., and Serafinowska, H. T. (1984) The protection of 2′-hydroxy functions in oligoribonucleotide synthesis Tetrahedron Lett 25, 3015–3018.

    CAS  Google Scholar 

  231. Reese, C. B., Saffhill, R, and Sulston, J. E. (1967) A symmetrical alternative to the tetrahydropyranyl protecting group. J. Am. Chem. Soc. 89, 3366–3368.

    CAS  Google Scholar 

  232. Reese, C. B., Saffhill, R., and Sulston, J. E. (1970) 4-Methoxytetrahydropyran-4-yl. A symmetrical alternative to the tetrahydropyranyl protecting group. Tetrahedron 26, 1023–1030.

    CAS  Google Scholar 

  233. Griffin, B.E and Reese, C B. (1964) Oligoribonucleotide synthesis via 2′,5′-protected ribonucleoside derivatives. Tetrahedron Lett 5, 2925–2931

    Google Scholar 

  234. Sandström, A, Kwiatkowski, M., and Chattopadhyaya, J. (1985) Chemical synthesis of a pentaribonucleoside tetraphosphate constituting the 3′-acceptor stem sequence of E coli tRNAIle using 2′-O-(3-methoxy-l,5-dicarbo-methoxypentan-3-yl)-ribonucleoside building blocks. Application of a new achiral and acid-labile 2′-hydroxyl protecting group in tRNA synthesis Acta Chem Scand. B39, 273–290.

    Google Scholar 

  235. Ohtsuka, E., Yamane, A., Doi, T., and Ikehara, M. (1984) Chemical synthesis of the 5′-half molecule of E. coli tRNA2 Gly. Tetrahedron 40, 47–57.

    CAS  Google Scholar 

  236. Ohtsuka, E, Yamane, A., and Ikehara, M. (1983) Studies on transfer ribonucleic acids and related compounds. XLV. Block condensation of ribooligonucleotides containing 2′-O-tetrahydrofuranyl-5′-O-dimethoxy-tritylnucleosides. Nucleic Acids Res. 11, 1325–1335.

    CAS  Google Scholar 

  237. Tanaka, T, Fujmo, K, Tamatsukuri, S, and Ikehara, M (1986) Synthesis of ohgoribonucleotides via the phosphite-triester approach on a polymer support. Chem. Pharm. Bull. 34, 4126–4132

    CAS  Google Scholar 

  238. Smith, M., Rammler, D. H., Goldberg, I. H., and Khorana, H. G. (1962) Studies on polynucleotides. XIV. Specific synthesis of the C3′-C5′ interribonucleotidic linkage. Synthesis of uridylyl-(3′–5′)-uridine and uridylyl-(3′–5′)-adenosine. J. Am. Chem. Soc 84, 430–440

    CAS  Google Scholar 

  239. Smrt, J (1973) Oligonucleotidic compounds. XLIV Protection of the inter-nucleotidic bond after its synthesis as approach to the synthesis of an oligonucleotidic chain. Collect. Czech. Chem. Commun. 38, 3189–3197.

    CAS  Google Scholar 

  240. Seliger, H., Zeh, D., Azuru, G., and Chattopadhyaya, J. (1983) Two new and efficient routes to the preparation of oligoribonucleotides of defined sequence. Chem.Scr 22, 95–101.

    CAS  Google Scholar 

  241. Takaku, H., Yoshida, M., and Nomoto, T. (1983) A convenient synthesis of the 3′-terminal nonaoligoribonucleotide of Rous Sarcoma Virus 35S RNA via the modified phosphotriester approach. J. Org. Chem. 48, 1399–1403

    CAS  Google Scholar 

  242. Hirao, I., Ishikawa, M., and Miura, K. (1986) Partial synthesis of leader sequence of phage f1 coat protein mRNA. Chem Lett. 1986, 1929–1932.

    Google Scholar 

  243. Hirao, I. and Miura, K (1989) Synthesis of oligoribonucleotides by the hydroxybenzotriazole-activatedphosphotriester/dicyclohexylcarbodumide system. Chem. Lett. 1989, 1799–1802.

    Google Scholar 

  244. Hirao, I., Ishikawa, M, Hori, H, Watanabe, K., and Miura, K. (1989) Synthesis of nonadeca-and octadecaribonucleotides using the solid-phase phosphotriester with tetrahydropyranyl groups as the 2′-hydroxyl-protecting group Bull. Chem Soc. Jpn. 62, 1995–2001

    CAS  Google Scholar 

  245. Kierzek, R., Caruthers, M. H., Longfellow, C E, Swinton, D., Turner, D. H., and Freier, S M. (1986) Polymer-supported RNA synthesis and its application to test the nearest-neighbor model for duplex stability Biochemistry 25, 7840–7846.

    CAS  Google Scholar 

  246. Tanimura, H., Maeda, M., Fukazawa, T, Sekine, M., and Hata, T. (1989) Chemical synthesis of the 24 RNA fragments corresponding to hop stunt viroid Nucleic Acids Res 17, 8135–8147.

    CAS  Google Scholar 

  247. Christodoulou, C, Agrawal, S., and Gait, M. J. (1986) Incompatibility of acid-labile 2′ and 5′ protecting groups for solid-phase synthesis of oligoribonucleotides. Tetrahedron Lett. 27, 1521,1522

    CAS  Google Scholar 

  248. Chou, S.-H., Flynn, P, and Reid, B. (1989) Solid-phase synthesis and high-resolution NMR studies of two synthetic double-helical RNA dodecamers’ r(CGCGAAUUCGCG) and r(CGCGUAUACGCG) Biochemistry 28, 2422–2435

    CAS  Google Scholar 

  249. Tanimura, H., Sekine, M., and Hata, T. (1987) Feature of internucleotidic 2′, 3′-cychcphosphate intermediates during liquid and solid phase synthesis of RNA fragments and practical synthesis of octaadenylate in the phosphoramidite approach. Chem. Lett. 1057–1060.

    Google Scholar 

  250. Reese, C. B., Rao, M. V, Serafinowska, H. T., Thompson, E. A., and Yu, P. S. (1991) Studies in the solid phase synthesis of oligo-and poly-ribonucleotides. Nucleosides, Nucleotides 10, 81–97.

    CAS  Google Scholar 

  251. Ma, Y. and Sonveaux, E. (1989) The 9-fluorenylmethyloxycarbonyl group as a 5′-OH protection in oligonucleotide synthesis. Biopolymers 28, 965–973.

    CAS  Google Scholar 

  252. Lehmann, C, Xu, Y.-Z., Christodoulou, C, Tan, Z.-K., and Gait, M. J. (1989) Solid-phase synthesis of oligoribonucleotides using 9-fluorenylmethoxycarb-onyl (Fmoc) for 5′-hydroxyl protection. Nucleic Acids Res. 17, 2379–2390.

    CAS  Google Scholar 

  253. Fukuda, T., Hamana, T., and Marmoto, R. (1988) Synthesis of RNA oligomer using 9-fluorenylmethoxycarbonyl (Fmoc) group for 5′-hydroxyl protection. Nucl. Acids Symp. Ser 19, 13–16.

    CAS  Google Scholar 

  254. Iwai, S. and Ohtsuka, E. (1988) Synthesis of oligoribonucleotides by the phosphoramidite approach using 5′-levulinyl and 2′-tetrahydrofuranyl protection. Tetrahedron Lett. 29, 5383–5386.

    CAS  Google Scholar 

  255. Iwai, S. and Ohtsuka, E. (1988) 5′-Levulinyl and 2′-tetrahydrofuranyl protection for the synthesis of oligoribonucleotides by the phosphoramidite approach. Nucleic Acids Res. 16, 9443–9456.

    CAS  Google Scholar 

  256. van Boom, J. H. (1977) Synthesis of oligoribonucleotides via phosphotriester intermediates. Heterocycles 7, 1197–1226.

    Google Scholar 

  257. van Boom, J. H. and Burgers, P. M. J. (1978) The application of levulinic acid as protective group to the synthesis of tetradecaribonucleotide UAUAUAUAUAUAUA via the modified phosphotriester method Recl. Trav. Chim. Pays-Bas 97, 73–80.

    Google Scholar 

  258. van Boom, J. H., Burgers, P. M. J., Verdegaal, C. H. M., and Wille, G. (1978) Synthesis of oligonucleotides with sequences identical with or analogous to the 3′-end of 16S ribosomal RNA of Escherichia coli: preparation of UCCUUA and ACCUCCUUA via the modified phosphotriester method. Tetrahedron 34, 1999–2007

    Google Scholar 

  259. den Hartog, J. A. J. and van Boom, J. H. (1981) Chemical synthesis of a 5′ and 3′/2′-phosphorylated heptamer sequence of E. coli tRNAf met: pAGCCUGG(34/2′)p via phosphotriester methods. Recl. Trav. Chim. Pays-Bas 100, 275–284.

    Google Scholar 

  260. van der Marel, G A., Wille, G., and van Boom, J. H (1982) Solid-phase synthesis of the RNA fragment: rAAGAAGAAGA. Recl. Trav. Chim. Pays-Bas 101, 241–246.

    Google Scholar 

  261. Neilson, T. and Werstiuk, E S. (1974) Synthesis of the anticodon loop of Escherichia coli Methionine transfer ribonucleic acid. J. Am. Chem. Soc. 96, 2295–2297.

    CAS  Google Scholar 

  262. Robins, M. J., Wilson, J. S., and Hansske, F. (1983) Nucleic acid related compounds. 42. A general procedure for the efficient deoxygenation of secondary alcohols. Regiospecific and stereoselective conversion of ribonucleosides to 2′-deoxynucleosides. J. Am. Chem. Soc., 105, 4059–4065.

    CAS  Google Scholar 

  263. van Boom, J. H. and Wreesmann, C. T. J. (1984) Chemical synthesis of small oligoribonucleotides in solution. Oligonucleotides Synthesis A Practical Approach (Gait, M. J., ed), IRL, Oxford and Washington DC, pp. 153–183.

    Google Scholar 

  264. Verdegaal, C. H. M., Jansse, P. L., de Rooij, J. F. M., Veeneman, G., and van Boom, J. H. (1981) A convenient synthesis of 2′-O-acetaI-N2-acyl derivatives of riboguanosine. Recl. Trav. Chim. Pays-Bas 100, 200–204.

    CAS  Google Scholar 

  265. Ohtsuka, E., Ohkubo, M., Yamane, A, and Ikehara, M. (1983) Studies on transfer ribonucleic acids and related compounds. XLIV. A large-scale synthesis of the anticodon heptanucleotide of formyl-methionine transfer ribonucleic acid by using 2′-O-tetrahydrofuranylnucleosides. Chem. Pharm. Bull. 31, 1910–1916.

    CAS  Google Scholar 

  266. Markiewicz, W. T., Nowakowska, B., and Adrych, K. (1988) Tetra-t-butoxy-disiloxane-l,3-diyl, a new type of bifunctional silyl protective group. Tetrahedron Lett. 29, 1561–1564.

    CAS  Google Scholar 

  267. Markiewicz, W. T (1979) Tetraisopropyldisiloxane-1,3-diyl, a group for simultaneous protection of 3′-and 5′-hydroxy functions of nucleosides. J. Chem. Res. Synop. 1979, 24,25; J. Chem. Res. (M) 1979, 181-197.

    Google Scholar 

  268. Markiewicz, W. T., Biala, E., and Kierzek, R. (1984) Application of the tetraisopropyldisiloxane-1,3-diyl group in the chemical synthesis of oligoribonucleotides. Bull Pol. Acad. Sci. Chem. 32, 433–451.

    CAS  Google Scholar 

  269. Tanaka, T., Tamatsukun, S., and Ikehara, M. (1987) Solid phase synthesis of oligoribonucleotides using the o-nitrobenzyl group for 2′-hydroxyl protection and H-phosphonate chemistry. Nucleic Acids Res. 15, 7235–7248.

    CAS  Google Scholar 

  270. Hayes, J. A., Brunden, M. J, Gilham, P. T., and Gough, G. R. (1985) High-yield synthesis of oligoribonucleotides using o-nitrobenzyl protection of 2′-hydroxyls. Tetrahedron Lett. 26, 2407–2410.

    CAS  Google Scholar 

  271. Hayes, J. A., Gough, G. R., and Gilham, P. T. (1989) Photochemistry of the o-nitrobenzyl protecting group in RNA synthesis. Nucleosides, Nucleotides 8, 1071,1072

    Google Scholar 

  272. Tanaka, T., Orita, M., Uesugi, S., and Ikehara, M. (1988) Solid phase synthesis of oligoribonucleotides using o-nitrobenzyl protection of 2′-hydroxyl via a phosphotriester approach. Tetrahedron 44, 4331–4338.

    CAS  Google Scholar 

  273. Bartholomew, D. G. and Broom, A. D. (1975) One-step chemical synthesis of ribonucleosides bearing a photolabile ether protecting group. J. Chem. Soc. Chem. Commun. 1975, 38.

    Google Scholar 

  274. Ohtsuka, E., Fujiyama, K., and Ikehara, M. (1981) Studies on transfer ribonucleic acids and related compounds. XL. Synthesis of an eicosaribonucleotide corresponding to residues 35-54 of tRNAf Met from E. coli. Nucleic Acids Res 9, 3503–3522

    CAS  Google Scholar 

  275. Ohtsuka, E., Tanaka, S., and Ikehara, M. (1974) Studies on transfer ribonucleic acids and related compounds. IX. Ribooligonucleotide synthesis using a photosensitive o-nitrobenzyl protection at the 2′-hydroxyl group. Nucleic Acids Res. 1, 1351–1357.

    CAS  Google Scholar 

  276. Ohtsuka, E, Tanaka, S., and Ikehara, M. (1978) Studies on transfer ribonucleic acids and related compounds 23. Synthesis of a heptanucleotide corresponding to a eukaryotic initiator tRNA loop sequence. J. Am. Chem. Soc. 100, 8210–8213.

    CAS  Google Scholar 

  277. Ohtsuka, E., Tanaka, S., and Ikehara, M. (1979) Studies on transfer ribonucleic acids and related compounds. XXXII. Synthesis of ribonucleotides corresponding to residues 1–5 and 6–10 of tRNAf Met from E. coli and their base conversion analogs. Nucleic Acids Res. 7, 1283–1296.

    CAS  Google Scholar 

  278. Ohtsuka, E., Tanaka, S., and Ikehara, M. (1979) Studies on transfer ribonucleic acids and related compounds. 29. Synthesis of adecaribonucleotide of Escherichia coli tRNAf Met (bases 11–20) using a new phosphorylating reagent. J. Am. Chem.Soc. 101, 6409–6414.

    CAS  Google Scholar 

  279. Ohtsuka, E., Takashjma, H., and Ikehara, M. (1981) Solid phase synthesis of ribo-oligonucleotides on a polyacrylmorpholide support. Tetrahedron Lett. 22, 765–768.

    CAS  Google Scholar 

  280. Tanaka, T., Tamatsukuri, S., and Ikehara, M. (1986) Solid phase synthesis of oligoribonucleotides using o-nitrobenzyl protection of 2′-hydroxyl via a phosphite triester approach. Nucleic Acids Res. 14, 6265–6279.

    CAS  Google Scholar 

  281. Ohtsuka, E., Tanaka, S, and Ikehara, M. (1977) Studies on transfer ribonucleic acids and related compounds. XVIII. A photolabile 2′-ether of guanosine as an intermediate for oligonucleotide synthesis. Synthesis 1977, 453–454.

    Google Scholar 

  282. Ohtsuka, E., Tanaka, T., Tanaka, S, and Ikehara, M (1978) Studies on transfer ribonucleic acids and related compounds. 20. A new versatile ribooligo-nucleotide block with 2′-(o-nitrobenzyl) and 3′-phosphorodianilidate groups suitable for elongation of chains in the 3′ and 5′ directions. J. Am. Chem. Soc 100, 4580–4584

    CAS  Google Scholar 

  283. Ohtsuka, E. Tanaka, S., and Ikehara, M. (1977) Studies on transfer ribonucleic acids and related compounds. XVI. Synthesis of ribooligonucleotides using a photosensitive O-nitrobenzyl protection for the 2′-hydroxyl group Chem. Pharm. Bull. 25, 949–959.

    CAS  Google Scholar 

  284. Ohtsuka, E, Wakabayashi, T., Tanaka, S., Tanaka, T., Oshie, K., Hasegawa, M., and Ikehara, M. (1981) Studies on tRNA and related compounds. XXXVII. Synthesis and physical properties of 2′-or 3′-O-(o-nitrobenzyl)nucleosides: the use of o-nitrophenyldiazomethane as a synthetic reagent. Chem. Pharm. Bull. 29, 318–324.

    CAS  Google Scholar 

  285. Flockerzi, D., Silber, G., Charubala, R., Schlosser, W., Varma, R. S., Creegan, F., and Pfleiderer, W. (1981) Nucleoside, XXXVII. Synthese und Eigenschaften von 2-O-und 3′-O-(tert-Butyldimethylsilyl)-5′-O-(4-methoxytrityl)-sowie 2′,3′-bis-O-(tert-ButyIdimethylsilyl)ribonucleosiden, Ausgangssubstanzen fur Oligoribonucleotid-Synthesen. Liebigs Ann. Chem. 1981, 1568–1585.

    Google Scholar 

  286. Ogilvie, K. K., Thenault, N., and Sadana, K. L (1977) Synthesis of oligoribonucleotides. J. Am. Chem Soc. 99, 7741–7743.

    CAS  Google Scholar 

  287. Ogilvie, K. K., Beaucage, S. L., Schifman, A. L, Theriault, N. Y., and Sadana, K. L. (1978) The synthesis of oligoribonucleotides. II. The use of silyl protecting groups in nucleoside and nucleotide chemistry. VII. Can. J. Chem 56, 2768–2780.

    CAS  Google Scholar 

  288. Ogilvie, K. K., Sadana, K. L., Thompson, E. A., Quilliam, M. A., and Westmore, J. B. (1974) The use of silyl groups in protecting the hydroxy 1 functions of ribonucleosides Tetrahedron Lett 15, 2861–2863.

    Google Scholar 

  289. Usman, N., Ogdvie, K K, Jiang, M. Y., and Cedergren, R J. (1987) Automated chemical synthesis of long oligoribonucleotides using 2′-O-silylated ribonucleoside 3′-O-phosphoramidites on a controUed-pore glass support synthesis of a 43-nucleotide sequence similar to the 3′-half molecule of an Escherichia coli formylmethionone tRNA. J. Am. Chem. Soc. 109, 7845–7854.

    CAS  Google Scholar 

  290. Hakimelahi, G. H, Proba, Z. A., and Ogilvie, K. K. (1982) New catalysts and procedures for the dimethoxytritylation and selective silylation of ribonucleosides. Can. J. Chem. 60, 1106–1113.

    CAS  Google Scholar 

  291. Sadana, K. L, and Loewen, P. C (1978) A rapid and efficient synthesis of ribonucleotides. Tetrahedron Lett. 19, 5095–5098.

    Google Scholar 

  292. Kohler, W. and Pfleiderer, W. (1979) Nucleoside, XXX. Synthese und Eigenschaften von 4-N-Benzoyl-O-(tert-butyldimethylsilyl)cytidinen. Liebigs Ann. Chem. 1979, 1855–1871.

    Google Scholar 

  293. Jones, S. S. and Reese, C. B. (1979) Migration of t-butyldimethylsilyl protecting groups. J. Chem. Soc. Perkin Trans. 1, 2762–2764.

    Google Scholar 

  294. Silber v. G., Flockerzi, D., Varma, R. S., Charubala, R., Uhlmann, E., and Pfleiderer, W. (1981) Nucleotide, XV. Synthese und Eigenschaften von 2′-O-t-Butyldimethylsilyl-5′-O-monomethoxytritylnbonucleosid-3′-phosphotriestern, Ausgangssubstanzen für Oligonucleotid-Synthesen. Helv. Chim. Acta 64, 1704–1716.

    CAS  Google Scholar 

  295. Flockerzi, D., Schlosser, W., and Pfleiderer, W (1983) Nucleotide, XVIII. Synthese und Eigenschaften von (tert-Butyldimethylsilyl)guanosinen, Guanosin-3′-phosphotriestern und Guanosin-haltigen Oligonucleotiden Helv. Chim. Acta 66, 2069–2085.

    CAS  Google Scholar 

  296. Scaringe, S. A., Francklyn, C, and Usman, N. (1990) Chemical synthesis of biologically active oligoribonucleotides using β-cyanoethyl protected ribonucleoside phosphoramidites. Nucleic Acids Res. 18, 5433–5441.

    CAS  Google Scholar 

  297. Wu, T and Ogilvie, K. K. (1990) A study on the alkylsilyl groups in oligo-ribonucleotide synthesis. J. Org. Chem. 55, 4717–4724.

    CAS  Google Scholar 

  298. Milecki, J., Dembek, P., and Antkowiak, W Z (1989) On the application of t-butyldimethylsilyl group in chemical RNA synthesis. Part I. 31P NMR study of 2′-O-r-BDMSi group migration during nucleoside 3′-OH phosphorylation and phosphitylation reactions Nucleosides Nucleotides 8, 463–474.

    CAS  Google Scholar 

  299. Flockerzi, D. Uhlmann, E., and Pfleiderer, W (1983) Nucleotide, XVII Synthese von homogenen Adenosyl-3′,5′-Oligomeren nach dem Phospho-triester-Verfahren Helv. Chim. Acta 66, 2018–2030

    CAS  Google Scholar 

  300. Ichiba, M., Charubala, R., Varma, R. S., and Pfleiderer, W (1986) Nucleotides, part XXV. Chemical synthesis of the hexanbonucleotide CAACCA. Helv. Chim. Acta 69, 1768–1777.

    CAS  Google Scholar 

  301. Ogilvie, K. K., Theriault, N. Y., Seifert, J.-M., Pon, R. T, and Nemer, M. J. (1980) The chemical synthesis of oligoribonucleotides IX A comparison of protecting groups in the dichloridite procedure Can. J Chem. 58, 2686–2693

    CAS  Google Scholar 

  302. Usman, N., Pon, R. T., and Ogilvie, K. K (1985) Preparation of ribonucleoside 3′-O-phosphoramidites and their application to the automated solid phase synthesis of oligonucleotides. Tetrahedron Lett. 26, 4567–4570.

    CAS  Google Scholar 

  303. Iwai, S., Sasaki, T, and Ohtsuka, E (1990) Large scale synthesis of oligoribonucleotides on a solid support: synthesis of a catalytic RNA duplex. Tetrahedron 46, 6673–6688

    CAS  Google Scholar 

  304. Wu, T., Ogilvie, K. K., Perreault, J.-P., and Cedergren, R. J (1989) Convenient procedure for the preparation of specific mixed DNA-RNA polymers. J. Am. Chem. Soc. 111, 8531–8533.

    CAS  Google Scholar 

  305. Takaku, H. and Kamaike, K. (1982) Synthesis of oligoribonucleotides usmg 4-methoxybenzyl group as a new protecting group of the 2′-hydroxyl group of adenosine. Chemistry Lett. 1982, 189–192.

    Google Scholar 

  306. Takaku, H., Kamaike, K., and Tsuchiya, H. (1984) Synthesis of ribonucleotides using the 4-methoxybenzyl group as a new protecting group for the 2′-hydroxyl group. J. Org. Chem. 49, 51–56.

    CAS  Google Scholar 

  307. Garegg, P J., Lindh, I., Regberg, T., Stawinski, J., Stromberg, R., and Henrichson, C. (1986) Nucleoside H-phosphonate. IV. Automated solid phase synthesis of oligoribonucleotides by the hydrogenphosphonate approach Tetrahedron Lett. 27, 4055–4058.

    CAS  Google Scholar 

  308. Agrawal, S. and Tang, J.-Y. (1990) Efficient synthesis of oligoribonucleotide and its phosphorothioate analog using H-phosphonate approach. Tetrahedron Lett. 31, 7541–7544.

    CAS  Google Scholar 

  309. Ogilvie, K. K. and Theriault, N. Y. (1979) The synthesis of oligoribonucleotides V. The stepwise synthesis of the 3′-terminal heptanucleotide sequence of tRNAfMet from E. coli. Can. J. Chem. 57, 3140–3144

    CAS  Google Scholar 

  310. Ogilvie, K. K. and Nemer, M. J. (1980) The synthesis of oligoribonucleotides VI. The synthesis of a hexadecamer by a block condensation approach. Can. J Chem. 58, 1389–1397.

    CAS  Google Scholar 

  311. Ogilvie, K. K. and Nemer, M J. (1980) Silica gel as solid support in the synthesis of oligoribonucleotides Tetrahedron Lett 21, 4159–4162.

    CAS  Google Scholar 

  312. Ogilvie, K. K, Nemer, M. J., and Gillen, M. F. (1984) Large scale bench-top synthesis of a nineteen unit ribonucleotide on silica gel. Tetrahedron Lett. 25, 1669–1672.

    CAS  Google Scholar 

  313. Stawinski, J. Stromberg, R., Thelin, M., and Westman, E. (1988) Studies on the t-butyldimethylsilyl group as 2′-O-protection in oligoribonucleotide synthesis via H-phosphonate approach. Nucleic Acids Res. 16, 9285–9298.

    CAS  Google Scholar 

  314. Wang, Y., Lyttle, M. H., and Borer, P. N. (1990) Enzymatic and NMR analysis of oligoribonucleotides synthesized with 2′-tert-butyldimethylsilyl protected cyanoethylphosphoramidite monomers. Nucleic Acids Res. 18, 3347–3352

    CAS  Google Scholar 

  315. van Boom, J. H, Burgers, P. M. J, and Haasnoot, C. A. G. (1977) General method for the synthesis of 3′, 5′-diesters and 2′-acetals of the four common nucleosides. Recl. Trav Chim. Pays-Bas 96, 91–120.

    Google Scholar 

  316. Neilson, T and Werstiuk, E. S (1971) Oligoribonucleotide synthesis II. Preparation of 2′-tetrahydropyranyl derivatives of adenosine and cytidine necessary for insertion in stepwise synthesis Can J. Chem. 49, 493–499.

    CAS  Google Scholar 

  317. Neilson, T. and Werstiuk, E. S. (1971) Oligoribonucleotide synthesis III. Synthesis of trinucleotides using a stepwise phosphotriester method. Can. J. Chem. 49, 3004–3011

    CAS  Google Scholar 

  318. Neilson, T., Wastrodowski, E. V., and Werstiuk, E. S. (1973) Oligoribo-nucleotide synthesis V. Preparation of 2′-tetrahydropyranyl derivatives of guanosine and their insertion into a general stepwise synthesis. Can. J. Chem. 51, 1068–1074.

    CAS  Google Scholar 

  319. Gregoire, R J. and Neilson, T. (1978) Oligoribonucleotide synthesis. XI. Improved preparation of 2′-tetrahydropyranyl derivatives of guanosine and adenosine necessary for insertion in phosphotriester synthesis Can. J Chem 56, 487–490

    CAS  Google Scholar 

  320. England, T E and Neilson, T. (1976) Oligoribonucleotide synthesis. IX. Synthesis of sequences corresponding to the dihydrouridine loop neck region common in several transfer RNA molecules. Can. J Chem. 54, 1714–1721.

    CAS  Google Scholar 

  321. Werstiuk, E. S and Neilson, T (1976) Oligoribonucleotide synthesis. X. An improved synthesis of the anticodon loop region of methionine transfer ribonucleic acid from E. coli. Can J. Chem. 54, 2689–2696.

    CAS  Google Scholar 

  322. van Boom, J, H, Owen, G. R., Preston, J., Ravindranathan, T., and Reese, C. B. (1971) The synthesis of oligonbonucleotides. Part K. Preparation of ribonucleo-side 2′-acetal 5′-esters. J. Chem. Soc. (C), 1971, 3230–3237.

    Google Scholar 

  323. Jones, S. S., Rayner, B., Reese, C. B, Ubasawa, A, and Ubasawa, M (1980) Synthesis of the 3′-terminal decanbonucleoside nonaphosphate of yeast alanine transfer ribonucleic acid. Tetrahedron 36, 3075–3085.

    CAS  Google Scholar 

  324. Reese, C. B, Serafmowska, H. T., and Zappia, G. (1986) An acetal group suitable for the protection of 2′-hydroxy functions in rapid oligoribonucleotide synthesis. Tetrahedron Lett. 27, 2291–2294.

    CAS  Google Scholar 

  325. Rao, T. S, Reese, C B., Serafmowska, H T, Takaku, H., and Zappia, G (1987) Solid phase synthesis of the 3′-terminal nonadecaribonucleoside octadecaphosphate sequence of yeast alanine transfer ribonucleic acid Tetrahedron Lett. 28, 4897–4900.

    CAS  Google Scholar 

  326. Sekine, M. and Hata, T. (1983) Cyclic orthoester functions as new protecting groups in nucleosides. J. Am. Chem. Soc. 105, 2044–2049.

    CAS  Google Scholar 

  327. Sekine, M. and Nakanishi, T. (1991) Oligoribonucleotide synthesis by use of the [[2-(methylthio)phenyl]thio]methyl (MPTM) group as the 2′-hydroxyl protecting group. Chem. Lett. 1991, 121–124.

    Google Scholar 

  328. Iwai, S., Yamada, E., Asaka, M., Hayase, Y., Inoue, H., and Ohtsuka, E. (1987) A new solid-phase synthesis of oligoribonucleotides by the phosphoro-p-anisidate method using tetrahydrofuranyl protection of 2′-hydroxyl groups. Nucleic Acids Res 15, 3761–3772

    CAS  Google Scholar 

  329. Ohtsuka, E., Yamane, A., and Ikehara, M (1983) Studies on transfer ribonucleic acids and related compounds. XLIII. Synthesis of oligoribonucleotides by using 5′-selective phosphorylation of 2′-O-tetrahydrofuranyl nucleosides. Chem. Pharm. Bull 31, 1534–1543.

    CAS  Google Scholar 

  330. Yamakage, S, Sakatsume, O., Furuyama, E., and Takaku, H (1989) l-(2-Chloroethoxy)ethyl group for the protection of 2′-hydroxyl group in the synthesis of oligoribonucleotides. Tetrahedron Lett 30, 6361–6364.

    CAS  Google Scholar 

  331. Sakatsume, O, Ogawa, T., Hosaka, H., Kawashima, M., Takaki, M., and Takaku, H. (1991) Synthesis and properties of non-hammerhead RNA using 1-(2-chloroethoxy)-ethyl group for the protection of 2′-hydroxyI function. Nucleosides, Nucleotides 10, 141–153.

    CAS  Google Scholar 

  332. Kwiatkowski, M. and Chattopadhyaya, J. (1982) An efficient synthesis of adenylyl-(3′–5′)-adenosine through the phosphotriester approach. Chem. Scr 20, 139–141.

    CAS  Google Scholar 

  333. Balgobin, N., Kwiatkowski, M., and Chattopadhyaya, J. (1982) A novel strategy for the chemical synthesis of DNA and RNA fragments using 2-oxymethyl-eneanthraquinone (MAQ) as a 3′-terminal phosphate protecting group. Chem. Scr. 20, 198–200.

    CAS  Google Scholar 

  334. Griffin, B. E., Reese, C. B, Stephenson, G. F., and Trentham, D. R. (1966) Oligoribonucleotide synthesis from nucleoside 2′-O-benzyl ethers. Tetrahedron Lett. 1, 4349–4354.

    Google Scholar 

  335. Charubala, R and Pfleiderer, W. (1987) 2′-OH protection by the p-nitrophenylethylsulfonyl (NPES) group in oligoribonucleotide synthesis. Nucleosides, Nucleotides 6, 517–520

    CAS  Google Scholar 

  336. Chattopadhyaya, J. B. and Reese, C. B. (1978) The 9-phenylxanthen-9-yl protecting group. J Chem. Sac. Chem Commun. 1978, 639,640.

    Google Scholar 

  337. Kwiatkowski, M. and Chattopadhyaya, J. (1984) The 9-(4-octadecyl-oxyphenylxanthen)-9-yl-group. A new acid-labile hydroxyl protective group and its application in the preparative reverse-phase chromatographic separation of oligoribonucleotides. Acta Chem Scand. B38, 657–671.

    CAS  Google Scholar 

  338. Kohli, V., Blöcker, H., and Koster, H. (1980) The tnphenylmethyl (trityl) group and its uses in nucleotide chemistry Tetrahedron Lett. 21, 2683–2686.

    CAS  Google Scholar 

  339. Chaudhary, S. K and Hernandez, O. (1979) A simplified procedure for the preparation of triphenylmethyl ethers. Tetrahedron Lett. 20, 95–98.

    Google Scholar 

  340. Reddy, M. P., Rampal, J. B., and Beaucage, S. L (1987) An efficient procedure for the solid phase tritylation of nucleosides and nucleotides. Tetrahedron Lett. 28, 23–26.

    CAS  Google Scholar 

  341. Gough, G R., Collier, K. J, Weith, H. L, and Gilham, P. T. (1979) The use of barium salts of protected deoxyribonucleoside-3′ p-chlorophenyl phosphates for construction of oligonucleotides by the phosphotriester method: high-yield synthesis of dinucleotide blocks. Nucleic Acids Res. 7, 1955–1964.

    CAS  Google Scholar 

  342. Kierzek, R, Ito, H., Bhatt, R., and Itakura, K. (1981) Selective N-deacyl-ation of N,O-protected nucleosides by zinc bromide. Tetrahedron Lett. 22, 3761–3764

    CAS  Google Scholar 

  343. Matteuci, M. D., and Caruthers, M. H. (1980) The use of zinc bromide for removal of dimethoxytrityl ethers from deoxynucleosides. Tetrahedron Lett. 21, 3243–3246

    Google Scholar 

  344. Ito, H., Ike, Y., Ikuta, S., and Itakura, K. (1982) Solid phase synthesis of polynucleotides. VI. Further studies on polystyrene copolymers for the solid support. Nucleic Acids Res 10, 1755–1769.

    CAS  Google Scholar 

  345. Sproat, B. S. and Bannwarth, W. (1983) Improved synthesis of oligodeoxy-nucleotides on controlled pore glass using phosphotriester chemistry and a flow system Tetrahedron Lett. 24, 5771–5774.

    CAS  Google Scholar 

  346. Adams, S. P, Kavka, K. S., Wykes, E J., Holder, S. B., and Galluppi, G. R. (1983) Hindered dialkylamino nucleoside phosphite reagents in the synthesis of two DNA 51-mers. J. Am. Chem. Soc. 105, 661–663.

    CAS  Google Scholar 

  347. Letsinger, R. L., Groody, E. P., Lander, N., and Tanaka, T. (1984) Some developments in the phosphite-triester method for synthesis of oligonucleotides. Tetrahedron 40, 137–143.

    CAS  Google Scholar 

  348. Mitchell, M. J, Hirschowitz, W., Rastinejad, F., and Lu, P. (1990) Boron tri-fluoride-methanol complex as a non-depurinating detritylating agent in DNA synthesis. Nucleic Acids Res. 18, 5321.

    CAS  Google Scholar 

  349. de Rooij, J P. M., Burgers, P. M. J., Wille-Hazeleger, G., and van Boom, J. H (1978) Formation of 5′-amino-deoxyribonucleoside monophosphates in the de-blocking of oligonucleotides via intermediate aryl phosphotriesters. Nucleic Acids Res Spec. Publ 4, s37–s40.

    Google Scholar 

  350. Gioeli, C. and Chattopadhyaya, J. B. (1982) The fluoren-9-yl-methoxycarbonyl group for the protection of hydroxy-groups, its application m the synthesis of an octathymidylic acid fragment. J. Chem. Soc. Chem. Commun. 1982, 672–674.

    Google Scholar 

  351. Balgobin, N. and Chattopadhyaya, J. B. (1987) Solid phase synthesis of DNA under a non-depunnating condition with a base labile 5′-protecting group (Fmoc) using phosphiteamidite approach. Nucleosides, Nucleotides 6, 461–463.

    CAS  Google Scholar 

  352. Reese, C. B, Titmas, R. C, and Yau, L. (1978) Oximate ion promoted unblocking of oligonucleotide phosphotriester intermediates Tetrahedron Lett. 19, 2727–2730.

    Google Scholar 

  353. Ogilvie, K K, Beaucage, S. L, and Entwistle, D W. (1976) A facile method for the removal of phosphate protecting groups in nucleotide synthesis. Tetrahedron Lett. 17, 1255,1256.

    Google Scholar 

  354. Reese, C. B. and Stewart, J. C. M. (1968) Methoxyacetyl as a protecting group in ribonucleotide chemistry. Tetrahedron Lett. 9, 4273–4276.

    Google Scholar 

  355. Arentzen, R. and Reese, C. B. (1977) The phosphotriester approach to oligonucleotide synthesis: preparation of oligo-and poly-thymidylic acids. J Chem. Soc. Perkin Trans. 1, 445–460.

    Google Scholar 

  356. Letsinger, R. L. and Lunsford, W. B. (1976) Synthesis of thymidine oligonucleotides by phosphite tnester intermediates J. Am. Chem. Soc. 98, 3655–3661

    CAS  Google Scholar 

  357. Sproat, B. S. and Gait, M. J. (1984) Solid-phase synthesis of oligodeoxyribo-nucleotides by the phosphotriester method. Oligonucleotides Synthesis: A Practical Approach (M. J. Gait, ed.), IRL, Oxford and Washington DC, pp. 83–115.

    Google Scholar 

  358. Werstiuk, E. S and Neilson, T (1972) Oligoribonucleotide synthesis. IV Approach to block synthesis. Can. J. Chem. 50, 1283–1291.

    CAS  Google Scholar 

  359. Werstiuk, E. S. and Neilson, T. (1973) Oligoribonucleotide synthesis. VI Selective deblocking of the 5′-O-triphenylmethoxyacetyl grouping in protected dinu-cleotides. Can. J. Chem. 51, 1889–1892.

    CAS  Google Scholar 

  360. Neilson, T., Deugau, K. V., England, T. E., and Werstiuk, E. S (1975) Oligoribonucleotide synthesis. VIII. Insertion of terminal 5′-phosphate groupings Can. J. Chem. 53, 1093–1098

    CAS  Google Scholar 

  361. van der Marel, G A., Marugg, J. E., de Vroom, E., Wille, G., Tromp, M., van Boeckel, C. A A, and van Boom, J H (1982) Phosphotnester synthesis of DNA fragments on cellulose and polystyrene solid supports. Red. Trav. Chim. Pays-Bas 101, 234–241.

    Google Scholar 

  362. Sekine, M. and Hata, T. (1985) 4,4′,4″-tris(levulinoyloxy)trityl as a new type of primary hydroxyl protecting group. Bull. Chem Soc. Jpn. 58, 336–339.

    CAS  Google Scholar 

  363. Sekine, M. and Hata, T. (1984) 4,4′,4″-tris(4,5-dichlorophtalimido)trityl: a new type of hydrazme-labile group as a protecting group of primary alcohols. J. Am. Chem. Soc. 106, 5763,5764.

    CAS  Google Scholar 

  364. Chattopadhyaya, J. B., Reese, C. B., and Todd, A. H, (1979) 2-Dibromomethyl-benzoyl: an acyl protecting group removable under exceptionally mild conditions. J. Chem. Soc. Chem. Commun. 1979, 987,988.

    Google Scholar 

  365. Brown, J. M., Christodoulou, C, Reese, C. B., and Sindona, G. (1984) Two new protected acyl protecting groups for alcoholic hydroxy functions. J. Chem Soc. Perkin Trans. 1, 1785–1790

    Google Scholar 

  366. Brown, J. M., Christodoulou, C, Modak, A. S., Reese, C B., and Serafinowska, H. T. (1989) Synthesis of the 3′-terminal half of yeast alanine transfer ribonucleic acid (tRNAAla) by the phosphotriester approach in solution, Part 2 J. Chem. Soc. Perkm Trans. 1, 1751–1767.

    Google Scholar 

  367. Balgobin, N., Welch, C, and Chattopadhyaya, J. (1982) The complementarity of two β-elimmating protecting groups in the synthesis of octathymidylic acid through the phosphotnester approach. Chem. Scr. 20, 196,197.

    CAS  Google Scholar 

  368. Balgobin, N., Josephson, S., and Chattopadhyaya, J. B (1981) The 2-phenylsulfonylethylcarbonyl (PSEC) group for the protection of the hydroxyl function. Tetrahedron Lett. 22, 3667–3670.

    CAS  Google Scholar 

  369. Josephson, S., Balgobin, N., and Chattopadhyaya, J. (1981) The application of 2-(4-chlorophenyl)-sulfonylethoxycarbonyl (CPSEC) group in the synthesis of a DNA segment using the phosphotnester approach. Tetrahedron Lett. 22, 4537–4540.

    CAS  Google Scholar 

  370. Ma, Y. and Sonveaux, E, (1987) The 9-fluorenylmethyloxycarbonyl (Fmoc) group as a 5′-O base labile protecting group in solid supported oligonucleotide synthesis. Nucleosides Nucleotides 6, 491–493

    CAS  Google Scholar 

  371. Seliger, H., Gupta, K. C, Kotschi, U., Spaney, T., and Zeh, D. (1986) New preparative methods in oligonucleotide chemistry and their application to gene synthesis. Chem. Scr. 26, 561–567.

    CAS  Google Scholar 

  372. Biernat, J., Wolter, A., and Koster, H. (1983) Punfication orientated synthesis of oligodeoxynucleotides in solution. Tetrahedron Lett. 24, 751–754.

    CAS  Google Scholar 

  373. Görtz, H.-H and Seliger, H. (1981) New hydrophobic protecting groups for the chemical synthesis of oligonucleotides. Angew Chem. Int. Edit. 20, 681,682

    Google Scholar 

  374. Seliger, H. and Gortz, H-H. (1981) Specific separation of products in supported oligonucleotide syntheses using the triester method Angew Chem. Int. Edit. 20, 683,684.

    Google Scholar 

  375. Fourrey, J. L., Varenne, J., Blonski, C, Dousset, P., and Shire, D. (1987) 1,1-bis-(4-methoxyphenyl)-1′-pyrenyl methyl (bmpm): a new fluorescent 5′ protecting group for the purification of unmodified and modified oligonucleotides. Tetrahedron Lett 28, 5157–5160.

    CAS  Google Scholar 

  376. Fisher, E. F and Caruthers, M. H. (1983) Color coded triarylmethyl protecting groups for deoxypolynucleotide synthesis. Nucleic Acids Res 11, 1589–1599.

    CAS  Google Scholar 

  377. Schott, H. and Ruess, H (1986) Synthesis of fragments of the terminal repeating units of macronuclear DNA from hypotrichous ciliates. Makromol. Chem. 187, 81–104.

    CAS  Google Scholar 

  378. Schott, H., Semmler, R., Closs, K, and Eckstem, H. (1987) Preparative synthesis of guanylate-rich fragments of the terminal sequence of macronuclear DNA from hypotrichous ciliates using the phosphotriester method in solution. Makromol. Chem 188, 1313–1346.

    CAS  Google Scholar 

  379. Denny, W. A., Leupin, W., and Kearns, D. R (1982) Simplified liquid-phase preparation of four decadeoxyribonucleotides and their preliminary spectroscopic characterization Helv. Chim. Acta 65, 2372–2393.

    CAS  Google Scholar 

  380. Takaku, H., Watanabe, T, and Hamamoto, S. (1988) Use of 1,1,1,3,3,3-hexafluoro-2-propyl protecting group in the synthesis of DNA fragments via phosphoramidite intermediates Tetrahedron Lett. 29, 81–84.

    CAS  Google Scholar 

  381. Yamakage, S., Fujii, M, Takaku, H., and Uemura. M. (1989) 1,1,1,3,3,3-hexa-fluoro-2-propyl group as a new phosphate protecting group for oligoribonu-cleotide synthesis in the phosphotriester approach. Tetrahedron 45, 5459–5468.

    CAS  Google Scholar 

  382. Katagiri, N., Itakura, K, and Narang, S. A. (1975) The use of arylsulfonyl-triazoles for the synthesis of oligonucleotides by the triester approach. J. Am. Chem. Soc. 97, 7332–7337.

    CAS  Google Scholar 

  383. Reese, C. B. and Zard, L. (1981) Some observations relating to the oximate ion promoted unblocking of oligonucleotide aryl esters. Nucleic Acids Res. 9, 4611–4626.

    CAS  Google Scholar 

  384. Reese, C. B. and Yau, L (1978) Reaction between 4-nitrobenzaldoximate ion and phosphotriesters. Tetrahedron Lett 19, 4443–4446.

    Google Scholar 

  385. Patel, T. P., Chauncey, M. A., Millican, T. A., Bose, C. C, and Eaton, M. A W. (1984) A rapid deprotection procedure for phosphotnester DNA synthesis. Nucleic Acids Res. 12, 6853–6859.

    CAS  Google Scholar 

  386. Takaku, H., Yamaguchi, R., and Nomoto, T. (1979) 5-chloro-8-quinolyl group as high efficient phosphate protecting group for the synthesis of oligoribo-nucleotides Tetrahedron Lett. 20, 3857–3860.

    Google Scholar 

  387. Takaku, H., Kato, M., Yoshida, M., and Yamaguchi, R. (1980) A convenient method for insertion of the 5′-terminal phosphate group in the triester approach to oligoribonucleotide synthesis. J Org Chem. 45, 3347–3350.

    CAS  Google Scholar 

  388. Takaku, H., Kamaike, K., and Kasuga, K. (1982) Synthesis of bis(5-chloro-8-quinolyl) nucleoside 5′-phosphates in oligoribonucleotide synthesis by the phosphotriester approach. J. Org. Chem 47, 4937–4940.

    CAS  Google Scholar 

  389. Asseline, U. and Thuong, N. T (1985) L’ion benzohydroxamate: nouveau reactif de desarylation en synthase d’oligonucléotide. Tetrahedron Lett. 26, 1005–1008.

    CAS  Google Scholar 

  390. Hotoda, H., Wada, T., Sekine, M, and Hata, T. (1989) Pre-activation strategy for oligodeoxynbonucleotide synthesis using triaryloxydichlorophosphoranes in the phosphotriester method. Nucleic Acids Res. 17, 5291–5305.

    CAS  Google Scholar 

  391. Matsuzaki, J., Hotoda, H., Sekine, M., and Hata, T. (1989) Bis(2,4,6-tribromophenyl) phosphorochloridate. a new type of condensing reagent in oligonucleotide synthesis Nucleosides, Nucleotides 8, 367–382.

    CAS  Google Scholar 

  392. Tanimura, H., Sekine, M., and Hata, T. (1986) Further development of oligoribonucleotide: bis(tributyltin)oxide as a reagent for removal of the intemucleotidic phenylthio group via the phosphotriester approach. Tetrahedron 42, 4179–4186.

    CAS  Google Scholar 

  393. Sekine, M., Tanimura, H., and Hata, T. (1985) An effective method for removal of the mtemucleotidic phenylthio group from fully protected oligonucleotides by the use of bis(tributyltin) oxide. Tetrahedron Lett. 26, 4621–4624.

    CAS  Google Scholar 

  394. Sood, A. K. and Narang, S. A. (1977) A rapid and convenient synthesis of poly-thymidylic acid by the modified triester approach. Nucleic Acids Res. 4, 2757–2765.

    CAS  Google Scholar 

  395. Adamiak, R. W, Barciszewska, M. Z., Biala, E., Grzeskowiak, K., Kierzek, R., Kraszewski, A, Markiewicz, W T., and Wiewiorowski, M. (1976) Nucleoside 3′-phosphotriesters as key intermediates for the oligoribonucleotide synthesis. III. An improved preparation of nucleoside 3′-phosphotriesters, their 1H NMR characterization and new conditions for removal of 2-cyanoethyl group. Nucleic Acids Res. 3, 3397–3408.

    CAS  Google Scholar 

  396. Hsiung, H. M. (1982) Improvements in the phosphotriester synthesis of deoxyribooligonucleotides, the use of hindered primary amines and a new isolation procedure. Tetrahedron Lett 23, 5119–5122.

    CAS  Google Scholar 

  397. Hsiung, H. M., Inouye, S., West, J. Sturm, B., and Inouye, M. (1983) Further improvements on the phosphotriester synthesis of deoxyribooligonucleotides and the oligonucleotide directed site-specific mutagenesis of E. coli lipoprotein gene. Nucleic Acids Res. 11, 3227–3239.

    CAS  Google Scholar 

  398. Sinha, N. D., Biemat, J., and Koster, H. (1983) P-Cyanoethyl N,N-dialkylamino/ N-morpholinomonochloro phosphoamidites, new phosphitylating agents facilitating ease of deprotection and work-up of synthesized oligonucleotides. Tetrahedron Lett. 24, 5843–5846.

    CAS  Google Scholar 

  399. Sinha, N. D., Biernat, J., McManus, J., and Köster, H. (1984) Polymer support oligonucleotide synthesis XVIII: use of β-cyanoethyl-N,N-dialkylamino-/N-morpholino phosphoramidite of deoxynucleosides for the synthesis of DNA fragments simplifying deprotection and isolation of the final product. Nucleic Acids Res. 12, 4539–4557.

    CAS  Google Scholar 

  400. Letsinger, R. L. and Ogilvie, K. K. (1969) Synthesis of oligothymidylates via phosphotriester intermediates. J. Am. Chem. Soc. 91, 3350–3355.

    CAS  Google Scholar 

  401. Letsinger, R. L., Ogilvie, K. K., and Miller, P. S. (1969) Developments in syntheses of oligodeoxynbonucleotides and their organic derivatives. J. Am. Chem Soc. 91, 3360–3365.

    CAS  Google Scholar 

  402. Broka, C, Hozumi, T., Arentzen, R., and Itakura, K. (1980) Simplifications in the synthesis of short oligonucleotide blocks. Nucleic Acids Res. 8, 5461–5471.

    CAS  Google Scholar 

  403. Efimov, V. A., Reverdatto, S. V., and Chakhmakhcheva, O. G. (1982) New effective method for the synthesis of oligonucleotides via phosphotriester intermediates. Nucleic Acids Res. 10, 6675–6694.

    CAS  Google Scholar 

  404. Uhlmann, E. and Pfleiderer, W. (1980) New improvements in oligonucleotide synthesis by use of the p-nitrophenylethyl phosphate blocking group and its deprotection by DBU or DEN. Tetrahedron Lett. 21, 1181–1184.

    CAS  Google Scholar 

  405. Beiter, A. H. and Pfleiderer, W. (1984) Solution synthesis of protected di-2′-deoxynucleoside phosphotriesters via the phosphoramidite approach. Tetrahedron Lett. 25, 1975–1978.

    CAS  Google Scholar 

  406. Claesen, C. A. A., Segers, R. P. A. M., and Tesser, G. I. (1985) A comparison of β-functionalized ethyl groups for the protection of the phospho function in decathymidylate synthesis using a phosphite triester approach. Recl. Trav. Chim Pays-Bos 104, 209–214

    CAS  Google Scholar 

  407. Claesen, C. A. A., Segers, R. P. A M., and Tesser, G. I (1985) Ar(alk)ylsulfonyl ethyl groups as phosphorus-protecting functions. Recl. Trav. Chim. Pays-Bas 104, 119–122.

    CAS  Google Scholar 

  408. Takaku, H., Hamamoto, S., and Watanabe, T. (1986) Use of 2-(2-pyridyl)ethyl group as a new protecting group of intemucleotidic phosphates in oligonucleotide synthesis. Chem. Lett. 1986, 699–702.

    Google Scholar 

  409. Hamamoto, S., Shishido, Y., Furuta, M., Takaku, H., Kawashima, M., and Takaki, M. (1989) Use of the 2-(4-pyridyl)ethyl protecting group in the synthesis of DNA fragments via phosphoramidite intermediates. Nucleosides, Nucleotides 8, 317–326.

    CAS  Google Scholar 

  410. van Boom, J. H., Burgers, P. M. J., Crea, R., van der Marel, G., and Wille, G. (1977) Synthesis of oligonucleotides with sequences identical with or analogous to the 3′-end of 16S ribosomal RNA of Escherichia coli. preparation of m6 2ACCUCC and ACCUCm4 2C via phosphotriester intermediates. Nucleic Acids Res. 4, 747–759.

    Google Scholar 

  411. Daub, G. W. and van Tamelen, E. E (1977) Synthesis of oligoribonucleotides based on the facile cleavage of methyl phosphotriester intermediates. J Am Chem Soc. 99, 3526–3528.

    CAS  Google Scholar 

  412. Smith, D. J. H., Ogilvie, K K., and Gillen, M. F (1980) The methyl group as phosphate protecting group in nucleotide synthesis. Tetrahedron Lett. 21, 861–864.

    CAS  Google Scholar 

  413. Dahl, B. H., Bjergarde, K., Henriksen, L., and Dahl, O. (1990) A highly reactive, odourless substitute for thiophenol/tnethylamine as a deprotection reagent in the synthesis of oligonucleotides and their analogs. Acta Chem. Scand 44, 639–641

    CAS  Google Scholar 

  414. Caruthers, M. H. (1982) Chemical synthesis of ohgodeoxynucleotides using the phosphite triester intermediates. Chemical and Enzymatic Synthesis of Gene Fragments, a Laboratory Manual (Gassen, H. G. and Lang, A., eds.), Verlag Chemie, Weinheim, pp. 71–79.

    Google Scholar 

  415. Efmov, V A., Buryakova, A A., Dubey, I. Y, Polushin, N. N, Chakhmakhcheva, O. G., and Ovchinnikov, Y. A. (1986) Application of new catalytic phosphate protecting groups for the highly efficient phosphotriester oligonucleotide synthesis. Nucleic Acids Res. 14, 6525–6540.

    Google Scholar 

  416. Froehler, B. C. and Matteuci, M. D. (1985) l-Methyl-2-(2-hydroxy-phenyl)imidazole: a catalytic phosphate protecting group in deoxyoligo-nucleotide synthesis J. Am. Chem. Soc 107, 278,279

    CAS  Google Scholar 

  417. Sproat, B. S., Rider, P., and Beijer, B. (1986) Highly efficient oligodeoxyribo-nucleotide synthesis using fully base protected phosphodiester building blocks carrying 2-(l-methylimidazol-2-yI)phenyl protection of the phosphate. Nucleic Acids Res. 14, 1811–1824

    CAS  Google Scholar 

  418. Catlin, J. C. and Cramer, F. (1973) Deoxyoligonucleotide synthesis via the triester method. J. Org. Chem. 38, 245–250.

    CAS  Google Scholar 

  419. Li, B. F. L., Reese, C. B., and Swann, P. F. (1987) Synthesis and characterization of ohgodeoxynucleotides containing 4-O-methylthymine. Biochemistry 26, 1086–1093.

    CAS  Google Scholar 

  420. Itakura, K., Katagin, N., Narang, S. A., Bahl, C. P., Marians, K. J., and Wu, R. (1975) Chemical synthesis and sequence studies of deoxyribooligonucleotides which constitute the duplex sequence of the lactose operator of Escherichia coli J. Biol. Chem 250, 4592–4600.

    CAS  Google Scholar 

  421. Bahl, C P., Wu, R., Itakura, K., Katagiri, N., and Narang, S. A. (1976) Chemical and enzymatic synthesis of lactose operator of Escherichia coli and its binding to lactose repressor. Proc. Natl Acad. Sci. USA 73, 91–94.

    CAS  Google Scholar 

  422. Crea, R., Kraszewski, A, Hirose, T., and Itakura, K. (1978) Chemical synthesis of genes for human insulin. Proc. Natl. Acad Sci. USA 75, 5765–5769

    CAS  Google Scholar 

  423. Seliger, H., Bach, T.-C, Siewert, G, Boidol, W., Topert, M., Schulten, H.-R, and Schiebel, H M (1984) Synthesis of deoxyoligonucleotide linker fragments for genetic engineering using improved preparative and analytical techniques. Liebigs Ann. Chem 1984, 835–853.

    Google Scholar 

  424. Gough, G. R., Singleton, C. K., Weith, H. L., and Gilham, P. T (1979) Protected deoxyribonucleoside-3′ aryl phosphodiesters as key intermediates in polynucleotide synthesis. Construction of an icosanucleotide analogous to the sequence at the ends of Rous sarcoma virus 35S RNA. Nucleic Acids Res. 6, 1557–1570.

    CAS  Google Scholar 

  425. Gioeh, C. and Chattopadhyaya, J. (1982) Fluorene-9-methyl-, a phosphate protecting group its application in the phosphotriester approach through the synthesis of tetracosathymidilic acid. Chem. Scr. 19, 235–237.

    Google Scholar 

  426. Balgobin, N. and Chattopadhyaya, J. (1982) An efficient chemical synthesis of a biologically functional DNA molecule, 5′d(ATGGGTTTCTTCGC-)3′, through the phosphotriester approach. Chem. Scr. 20, 133–138

    CAS  Google Scholar 

  427. Itakura, K., Katagin, N., and Narang, S. A. (1974) Synthesis of lactose-operator gene fragments by the improved triester method. Can. J Chem. 52, 3689–3693.

    CAS  Google Scholar 

  428. Marugg, J. E, Nielsen, J., Dahl, O, Burik, A., van der Marel, G. A., and van Boom, J. H (1987) (2-Cyano-l,l-dimethylethoxy)bis(diethylamino)phosphine-a convenient reagent for the synthesis of DNA fragments. Recl. Trav Chim. Pays-Bas. 106, 72–76

    CAS  Google Scholar 

  429. De Bernardini, S., Waldmeier, F., and Tamm, C. (1981) Nucleosides and Nucleotides. Part 17. A simple preparation of protected deoxynucleoside-3′-phosphates. Helv. Chim. Acta 64, 2142–2147.

    Google Scholar 

  430. Chattopadhyaya, J. B. and Reese, C. B. (1979) Some observations relating to phosphorylation methods in oligonucleotide synthesis. Tetrahedron Lett 20, 5059–5062

    Google Scholar 

  431. Sekine, M., Hamaoki, K., and Hata, T. (1979) Synthesis and properties of S,S-diaryl nucleoside phosphorodithioates in oligoribonucleotide synthesis. J. Org. Chem. 44, 2325,2326.

    CAS  Google Scholar 

  432. Chnstodoulou, C. and Reese, C. B. (1983) Dealkylation of nucleoside arylmethyl 2-chlorophenyl phosphates: the 2,4-dinitrobenzyl protecting group Tetrahedron Lett. 24, 951–954.

    Google Scholar 

  433. Reese, C. B., Titmas, R C, and Valente, L. (1981) Action of toluene-p-thiol and triethylamine on fully protected thymidylyl-(3′–5′)-thymidine. Possible occurrence of thiolate ion-promoted internucleotide cleavage in the synthesis ofoligonucleotides by the phosphotriester approach J Chem. Soc. Perkin Trans. 1, 2451–2455

    Google Scholar 

  434. Takaku, H., Yoshida, M., Kamaike, K., and Hata, T. (1981) 4-chlorophenyl 5-chloro-8-quinolyl phosphorochloridate’ a practically useful phosphorylating agent for oligonbonucleotide synthesis via phosphotriester approach. Chem Lett. 1981, 197–200

    Google Scholar 

  435. Takaku, H., Nomoto, T., and Kamaike, K (1981) 4-chlorophenyl 5-chloro-8-quinolyl phosphorotetrazolide: a highly efficient phosphorylating agent for oligoribonucleotide synthesis. Chem. Lett. 1981, 543–546

    Google Scholar 

  436. Takaku, H., Kamaike, K., and Suetake, M. (1983) A simple synthetic method of deoxyribodinucleotide blocks. Chem Lett. 1983, 111–114

    Google Scholar 

  437. Ohtsuka, E., Tanaka, T., Wakabayashi, T., Taniyama, Y, and Ikehara, M. (1978) A new nbo-oligonucleotide block synthesized by phosphorylation with p-chlorophenyl N-phenylchlorophosphoramidate J Chem. Soc Chem. Commun. 1978, 824,825.

    Google Scholar 

  438. Ohtsuka, E., Murao, K., Ubasawa, M., and Ikehara, M (1970) Studies on transfer ribonucleic acids and related compounds. I. Synthesis of nbooligonucleotides using aromatic phosphoramidates as protecting group. J. Am Chem. Soc. 92, 3441–3445.

    CAS  Google Scholar 

  439. Ohtsuka, E., Shibahara, S., Ono, T., Fukui, T., and Ikehara, M. (1981) Synthesis of deoxyribooligonucleotides by using aromatic phosphoramidates as the protecting group for the 3′-phospho ends. Heterocycles 15, 395–398.

    CAS  Google Scholar 

  440. van Boom, J. H., Burgers, P. M. J, van der Marel, G., Verdegaal, C H. M., and Wille, G. (1977) Synthesis of oligonucleotides with sequences identical with or analogous to the 3′-end of 16S ribosomal RNA of Escherichia coli: preparation of ACCUCC via the modified phosphotriester method Nucleic Acids Res 4, 1047–1063

    Google Scholar 

  441. de Rooy, J. F. M, Wille-Hazeleger, G., van Deursen, P. H., Serdijn, J., and van Boom, J. H. (1979) Synthesis of complementary DNA fragments via phosphotriester intermediates. Recl. Trav. Chim. Pays-Bos 98, 537–548

    Google Scholar 

  442. de Rooij, J. P. M., Wille-Hazeleger, G., Vink, A B J., and van Boom, J H. (1979) Synthesis of functionahzed DNA fragments suitable for reversible attachment to activated cellulose. Tetrahedron 35, 2913–2926.

    Google Scholar 

  443. Arentzen, R., van Boeckel, C A. A., van der Marel, G., and van Boom, J H. (1979) 2,2,2-tribromomethyl 2-chloro-4-t-butylphenyl phosphorochloridate. a convenient phosphorylating agent for the synthesis of DNA-fragments by the phosphotriester approach. Synthesis 1979, 137–139.

    Google Scholar 

  444. Balgobin, N. and Chattopadhyaya, J. (1982) 2-(4-nitrophenyl)thioethyl, A phosphate protecting group and its application in conjunction with 5′-O-2,2-dibromomethylbenzoyl group in the synthesis of dodecathymidilic acid through the phosphotriester approach. Chem. Scr. 20, 144–146.

    CAS  Google Scholar 

  445. Balgobin, N. and Chattopadhyaya, J. (1982) 5-benzisoxazolylmethylene (DIM) A new phosphate protecting group; its application in DNA synthesis through the phosphotriester approach. Chem. Scr. 20, 142,143.

    CAS  Google Scholar 

  446. Josephson, S. and Chattopadhyaya, J. (1981) The application of the 2-phenylsulfonylethyl-, a novel phosphate protecting group, in the synthesis of DNA fragments of defined sequences. Chem. Scr. 18, 184–188

    CAS  Google Scholar 

  447. Balgobin, N, Josephson, S, and Chattopadhyaya, J. (1981) 2-Phenylsulf-onylethyl, a new phosphate protecting group: its application in the synthesis of dodecathymidilic acid. Tetrahedron Lett. 22, 1915–1918.

    CAS  Google Scholar 

  448. Hayakawa, Y., Uchiyama, M, Kato, H., and Noyori, R. (1985) Allyl protection of internucleotide linkage. Tetrahedron Lett. 26, 6505–6508.

    CAS  Google Scholar 

  449. Farrance, I. K, Eadie, J S., and Ivarie, R (1989) Improved chemistry for oligo-deoxyribonucleotide synthesis substantially improves restriction enzyme cleavage of a synthetic 35mer. Nucleic Acids Res. 17, 1231–1245.

    CAS  Google Scholar 

  450. Gryaznov, S. M and Letsinger, R L. (1991) Synthesis of oligonucleotides via monomers with unprotected bases. J. Am. Chem. Soc. 113, 5876–5877.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Sonveaux, E. (1994). Protecting Groups in Oligonucleotide Synthesis. In: Protocols for Oligonucleotide Conjugates. Methods in Molecular Biology, vol 26. Humana Press. https://doi.org/10.1007/978-1-59259-513-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-513-6_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-252-1

  • Online ISBN: 978-1-59259-513-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics