Skip to main content

CRISPR-Cas-Mediated Gene Knockout in Tomato

  • Protocol
  • First Online:
Plant and Food Carotenoids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2083))

Abstract

Loss-of-function mutants are crucial for plant functional genomics studies. With the advent of CRISPR-Cas genome editing, generating null alleles for one or multiple specific gene(s) has become feasible for many plant species including tomato (Solanum lycopersicum). An easily programmable RNA-guided Cas endonuclease efficiently creates DNA double-strand breaks (DSBs) at targeted genomic sites that can be repaired by nonhomologous end joining (NHEJ) typically leading to small insertions or deletions that can produce null mutations. Here, we describe how to utilize CRISPR-Cas genome editing to obtain stable tomato gene knockout lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rothan C, Bres C, Garcia V, Just D (2016) Tomato resources for functional genomics. In: Causse M, Giovannoni J, Bouzayen M, Zouine M (eds) The tomato genome. Springer, Berlin, Germany, pp 75–94

    Chapter  Google Scholar 

  2. Van Eck J (2018) Genome editing and plant transformation of solanaceous food crops. Curr Opin Biotechnol 49:35–41

    Article  Google Scholar 

  3. Ron M, Kajala K, Pauluzzi G, Wang D, Reynoso MA, Zumstein K et al (2014) Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol 166:455–469

    Article  CAS  Google Scholar 

  4. Van Eck J, Keen P, Tjahjadi M (2019) Agrobacterium tumefaciens-mediated transformation of tomato. In: Kumar S, Barone P and Smith M (Eds) Transgenic plants (methods in molecular biology 1864). Humana Press, New York, NY, pp 225–234

    Google Scholar 

  5. Shikata M, Ezura H (2016) Micro-tom tomato as an alternative plant model system: mutant collection and efficient transformation. In: Botella J, Botella M (eds) Plant signal transduction (methods in molecular biology 1363). Humana Press, New York, NY, pp 47–55

    Chapter  Google Scholar 

  6. Garcia D, Narváez-Vásquez J, Orozco-Cárdenas ML (2015) Tomato (Solanum lycopersicum). In: Wang K (ed) Agrobacterium protocols (methods in molecular biology 1223). Springer, New York, NY, pp 349–361

    Chapter  Google Scholar 

  7. Lampropoulos A, Sutikovic Z, Wenzl C, Maegele I, Lohmann JU, Forner J (2013) GreenGate—a novel, versatile, and efficient cloning system for plant transgenesis. PLoS One 8:e83043

    Article  Google Scholar 

  8. Schiml S, Fauser F, Puchta H (2017) CRISPR/Cas-mediated in planta gene targeting. In: Busch W (ed) Plant genomics (methods in molecular biology 1610). Humana Press, New York, NY, pp 3–11

    Google Scholar 

  9. Ellul P, Garcia-Sogo B, Pineda B, Ríos G, Roig L, Moreno V (2003) The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L. mill.) is genotype and procedure dependent. Theor Appl Genet 106:231–238

    Article  CAS  Google Scholar 

  10. Decaestecker W, Buono RA, Pfeiffer ML, Vangheluwe N, Jourquin J, Karimi M et al (2018) CRISPR-TSKO facilitates efficient cell type-, tissue-, or organ-specific mutagenesis in Arabidopsis. bioRxiv. 474981. https://doi.org/10.1101/474981

  11. Popp MW, Maquat LE (2016) Leveraging rules of nonsense-mediated mRNA decay for genome engineering and personalized medicine. Cell 165:1319–1322

    Article  CAS  Google Scholar 

  12. Zischewski J, Fischer R, Bortesi L (2017) Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol Adv 35:95–104

    Article  CAS  Google Scholar 

  13. Jacobs TB, Martin GB (2016) High-throughput CRISPR vector construction and characterization of DNA modifications by generation of tomato hairy roots. J Vis Exp 110:e53843

    Google Scholar 

  14. Fauser F, Schiml S, Puchta H (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79:348–359

    Article  CAS  Google Scholar 

  15. Ritter A, Iñigo S, Fernández-Calvo P, Heyndrickx KS, Dhondt S, Shi H et al (2017) The transcriptional repressor complex FRS7-FRS12 regulates flowering time and growth in Arabidopsis. Nat Commun 8:15235

    Article  Google Scholar 

  16. Pauwels L, De Clercq R, Goossens J, Iñigo S, Williams C, Ron M et al (2018) A dual sgRNA approach for functional genomics in Arabidopsis thaliana. G3 Genes 8:2603–2615

    CAS  Google Scholar 

  17. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z et al (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:481–485

    Article  Google Scholar 

  18. Houbaert A, Zhang C, Tiwari M, Wang K, de Marcos Serrano A, Savatin DV et al (2018) POLAR-guided signalling complex assembly and localization drive asymmetric cell division. Nature 563:574–578

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Goossens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Swinnen, G., Jacobs, T., Pauwels, L., Goossens, A. (2020). CRISPR-Cas-Mediated Gene Knockout in Tomato. In: Rodríguez-Concepción, M., Welsch, R. (eds) Plant and Food Carotenoids. Methods in Molecular Biology, vol 2083. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9952-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9952-1_25

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9951-4

  • Online ISBN: 978-1-4939-9952-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics