Skip to main content

Bioluminescence Imaging to Study Mature Biofilm Formation by Candida spp. and Antifungal Activity In Vitro and In Vivo

  • Protocol
  • First Online:
Bioluminescent Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2081))

Abstract

The widespread use of indwelling medical devices has increased the number of device-related infections in hospitalized patients. These infections are often associated with the formation of biofilms on the medical implants that are difficult to treat because of their resistance to the classical antifungal drugs. The most common fungi isolated from catheters and other medical devices are Candida species. The Candida genus contains multiple species of which C. albicans and C. glabrata are the two most common pathogenic yeasts in humans. A limited number of animal models is available for investigating host–pathogen interactions and testing novel antifungal drugs in vivo against these species. Fungal load in biofilms in these models is traditionally analyzed postmortem, requiring host sacrifice and enumeration of microorganisms from individual biofilms in order to evaluate the amount of colony forming units and the efficacy of antifungal treatment. Bioluminescence imaging (BLI) made compatible with small animal models for in vivo biofilm formation is a valuable tool to follow biofilm development and its treatment longitudinally. Due to the noninvasive nature of BLI, the imaging procedure can be repeated in the same animal, allowing for follow-up of the biofilm growth in vivo without removing the implanted device or detaching the biofilm from its substrate. Although detecting a quantifiable in vivo BLI signal from biofilms formed on the inside of implanted catheters is challenging, BLI proved to be a practical tool in the study of fungal biofilms. This method describes the use of BLI for in vitro and in vivo follow-up of device-related fungal biofilm formation in mice and rats and antifungal activity testing against both C. albicans and C. glabrata device-associated biofilms. It can further be applied for efficient in vivo screening for interesting genes of the pathogen and the host involved in biofilm formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown GD, Denning DW, Levitz SM (2012) Tackling human fungal infections. Science 336(6082):647. https://doi.org/10.1126/science.1222236

    Article  CAS  PubMed  Google Scholar 

  2. Nucci M, Marr KA (2005) Emerging fungal diseases. Clin Infect Dis 41(4):521–526

    Article  Google Scholar 

  3. Warnock DW (2006) Fungal diseases an evolving public health challenge. Med Mycol 44(8):697–705

    Article  Google Scholar 

  4. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309–317

    Article  Google Scholar 

  5. Periroth J, Choi B, Spellberg B (2007) Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol 45(4):321–346

    Article  Google Scholar 

  6. Eggimann P, Garbino J, Pittet D (2003) Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect Dis 3:685–702

    Article  Google Scholar 

  7. Eggimann P, Garbino J, Pittet D (2003) Management of Candida species infections in critically ill patients. Lancet Infect Dis 3(12):772–785

    Article  CAS  Google Scholar 

  8. Costa-Orlandi CB, Sardi JCO, Pitangui NS, de Oliveira HC, Sorzoni L, Galeane MC, Medina-Alarcón KP, Melo WCMA, Marcelino MY, Braz JD, Fusco-Almeida AM, Mendes-Giannini MJS (2017) Fungal biofilms and polymicrobial diseases. J Fungi (Basel) 3(2):E22

    Article  Google Scholar 

  9. Nett J, Andes D (2006) Candida albicans biofilm development, modeling a host-pathogen interaction. Curr Opin Microbiol 9:340–345

    Article  CAS  Google Scholar 

  10. Andes D, Nett J, Oschel P, Albrecht R, Marchillo K, Pitula A (2004) Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect Immun 72:6023–6031

    Article  CAS  Google Scholar 

  11. Schinabeck MK, Long LA, Hossain MA, Chandra J, Mukherjee PK, Mohamed S, Ghannoum MA (2004) Rabbit model of Candida albicans biofilm infection: liposomal amphotericin B antifungal lock therapy. Antimicrob Agents Chemother 48:1727–1732

    Article  CAS  Google Scholar 

  12. Lazzell AL, Chaturvedi AK, Pierce CG, Prasad D, Uppuluri P, Lopez-Ribot JL (2009) Treatment and prevention of Candida albicans biofilms with caspofungin in a novel central venous catheter murine model of candidiasis. J Antimicrob Chemother 64:567–570

    Article  CAS  Google Scholar 

  13. Řičicová M, Kucharíková S, Tournu H, Hendrix J, Bujdákova H, Van Eldere J, Lagrou K, Van Dijck P (2010) Candida albicans biofilm formation in a new in vivo rat model. Microbiol 156:909–919

    Article  Google Scholar 

  14. Van Wijngaerden E, Peetermans WE, Vandersmissen J, Van Lierde S, Bobbaers H, Van Eldere J (1999) Foreign body infection: a new rat model for prophylaxis and treatment. J Antimicrob Chemother 44:669–674

    Article  Google Scholar 

  15. Hutchens M, Luker GD (2007) Applications of bioluminescence imaging to the study of infectious diseases. Cell Microbiol 9:2315–2322

    Article  CAS  Google Scholar 

  16. Dorsaz S, Coste AT, Sanglard D (2017) Red-shifted firefly luciferase optimized for Candida albicans in vivo bioluminescence imaging. Front Microbiol 8:1478

    Article  Google Scholar 

  17. Enjalbert B, Rachini A, Vediyappan G, Pietrella D, Spaccapelo R, Vecchiarelli A, Brown AJ, d’Enfert C (2009) A multifunctional synthetic Gaussia princeps luciferase reporter for live imaging of Candida albicans infections. Infect Immun 77:4847–4858

    Article  CAS  Google Scholar 

  18. Doyle TC, Nawotka KA, Kawahara CB, Francis KP, Contag PR (2006) Visualizing fungal infections in living mice using bioluminescent pathogenic Candida albicans strains transformed with the firefly luciferase gene. Microb Pathog 40:82–90

    Article  CAS  Google Scholar 

  19. Papon N, Courdavault V, Lanoue A, Clastre M, Brock M (2014) Illuminating fungal infections with bioluminescence. PLoS Pathog 10(7):e1004179

    Article  Google Scholar 

  20. Persyn A, Rogiers O, Brock M, Vande Velde G, Lamkanfi M, Jacobsen ID, Himmelreich U, Lagrou K, Van Dijck P, Kuchariková S (2019) Monitoring of fluconazole and caspofungin activity against in vivo Candida glabrata biofilms by bioluminescence imaging. Antimicrob Agents Chemother 63:e01555-18

    Article  Google Scholar 

  21. Vande Velde G, Kuchariková S, Van Dijck P, Himmelreich U (2018) Bioluminescence imaging increases in vivo screening efficiency for antifungal activity against device-associated Candida albicans biofilms. Int J Antimicrob Agents 52:42–51

    Article  CAS  Google Scholar 

  22. Kucharíková S, Tournu H, Holtappels M, Van Dijck P, Lagrou K (2010) In vivo efficacy of anidulafungin against Candida albicans mature biofilms in a novel rat model of catheter-associated candidiasis. Antimicrob Agents Chemother 54:4474–4478

    Article  Google Scholar 

  23. Gillum AM, Tsay EYH, Kirsch DR (1984) Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198:179–182

    Article  CAS  Google Scholar 

  24. Vande Velde G, Kucharíková S, Van Dijck P, Himmelreich U (2014) Bioluminescence imaging of fungal biofilm development in live animals. Methods Mol Biol 1098:153–167

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Fund for Scientific Research Flanders (FWO) Research community on biology and ecology of bacterial and fungal biofilms (FWO: WO.026.11N), FWO research grant G.0691.15N, and FWO PhD fellowship to KVD (FWO 1181818N) and KU Leuven IF grants STG/15/24 and C32/18/010. We thank Christophe d’Enfert for providing us with the Clp10::ACT1p-gLUC59 plasmid. All imaging experiments were conducted at the Molecular Small Animal Imaging Center (MoSAIC) core facility of the KU Leuven. (Parts of this protocol have been updated and reprinted from [24] by permission from Springer © 2014.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Van Dijck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Van Dyck, K., Van Dijck, P., Vande Velde, G. (2020). Bioluminescence Imaging to Study Mature Biofilm Formation by Candida spp. and Antifungal Activity In Vitro and In Vivo. In: Ripp, S. (eds) Bioluminescent Imaging. Methods in Molecular Biology, vol 2081. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9940-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9940-8_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9939-2

  • Online ISBN: 978-1-4939-9940-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics