Skip to main content

Continual Conscious Bioluminescent Imaging in Freely Moving Mice

  • Protocol
  • First Online:
Bioluminescent Imaging

Abstract

In vivo bioluminescent imaging allows the detection of reporter gene expression in rodents in real time. Here we describe a novel technology whereby we can generate somatotransgenic rodents with the use of a viral vector carrying a luciferase transgene. We are able to achieve long term luciferase expression by a single injection of lentiviral or adeno-associated virus vectors to newborn mice. Further, we describe whole body bioluminescence imaging of conscious mice in a noninvasive manner, thus enforcing the 3R’s (replacement, reduction, and refinement) of biomedical animal research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buckley SMK, Delhove J, Perocheau DP, Karda R, Rahim AA, Howe SJ, Ward NJ, Birrell MA, Belvisi MG, Arbuthnot P, Johnson MR, Waddington SN, McKay TR (2015) In vivo bioimaging with tissue-specific transcription factor activated luciferase reporters. Sci Rep 5:11842. https://doi.org/10.1038/srep11842

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ciana P, Di Luccio G, Belcredito S, Pollio G, Vegeto E, Tatangelo L, Tiveron C, Maggi A (2001) Engineering of a mouse for the in vivo profiling of estrogen receptor activity. Mol Endocrinol 15(7):1104–1113. https://doi.org/10.1210/me.15.7.1104

    Article  CAS  PubMed  Google Scholar 

  3. Ward NJ, Buckley SMK, Waddington SN, VandenDriessche T, Chuah MKL, Nathwani AC, McIntosh J, Tuddenham EGD, Kinnon C, Thrasher AJ, McVey JH (2011) Codon optimization of human factor VIII cDNAs leads to high-level expression. Blood 117(3):798–807. https://doi.org/10.1182/blood-2010-05-282707

    Article  CAS  PubMed  Google Scholar 

  4. Buckley SMK, Howe SJ, Rahim AA, Buning H, McIntosh J, Wong SP, Baker AH, Nathwani A, Thrasher AJ, Coutelle C, McKay TR, Waddington SN (2008) Luciferin detection after intranasal vector delivery is improved by intranasal rather than intraperitoneal luciferin administration. Hum Gene Ther 19(10):1050–1056. https://doi.org/10.1089/hum.2008.023

    Article  CAS  PubMed  Google Scholar 

  5. Wu JC, Sundaresan G, Iyer M, Gambhir SS (2001) Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice. Mol Ther 4(4):297–306. https://doi.org/10.1006/mthe.2001.0460

    Article  CAS  PubMed  Google Scholar 

  6. Ryu YK, Khan S, Smith SC, Mintz CD (2014) Isoflurane impairs the capacity of astrocytes to support neuronal development in a mouse dissociated coculture model. J Neurosurg Anesthesiol 26(4):363–368. https://doi.org/10.1097/ana.0000000000000119

    Article  PubMed  PubMed Central  Google Scholar 

  7. Broad KD, Hassell J, Fleiss B, Kawano G, Ezzati M, Rocha-Ferreira E, Hristova M, Bennett K, Fierens I, Burnett R, Chaban B, Alonso-Alconada D, Oliver-Taylor A, Tachsidis I, Rostami J, Gressens P, Sanders RD, Robertson NJ (2016) Isoflurane exposure induces cell death, microglial activation and modifies the expression of genes supporting neurodevelopment and cognitive function in the male newborn piglet brain. PLoS One 11(11):e0166784. https://doi.org/10.1371/journal.pone.0166784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Karda R, Perocheau DP, Suff N, Ng J, Delhove J, Buckley SMK, Richards S, Counsell JR, Hagberg H, Johnson MR, McKay TR, Waddington SN (2017) Continual conscious bioluminescent imaging in freely moving somatotransgenic mice. Sci Rep 7:6374. https://doi.org/10.1038/s41598-017-06696-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Karda R, Rahim AA, Suff N, Diaz JA, Perocheau DP, Martin NP, Hughes M, Delhove J, Counsell JR, Henckaerts E, McKay TR, Buckley SMK, Waddington SN (2018) Generation of light-producing somatic-transgenic mice using adeno-associated virus vector. Mol Ther 26(5):40–40

    Google Scholar 

  10. Gould D (2017) Mammalian synthetic promoters. Springer, New York

    Book  Google Scholar 

  11. Yoder KE, Fishel R (2008) Real-time quantitative PCR and fast QPCR have similar sensitivity and accuracy with HIV cDNA late reverse transcripts and 2-LTR circles. J Virol Methods 153(2):253–256. https://doi.org/10.1016/j.jviromet.2008.07.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen TR, Hay RJ, Macy ML (1983) Intercellular karyotypic similarity in near-diploid cell-lines of human-tumor origins. Cancer Genet Cytogenet 10(4):351–362. https://doi.org/10.1016/0165-4608(83)90092-4

    Article  CAS  PubMed  Google Scholar 

  13. Barczak W, Suchorska W, Rubis B, Kulcenty K (2015) Universal real-time PCR-based assay for lentiviral titration. Mol Biotechnol 57(2):195–200. https://doi.org/10.1007/s12033-014-9815-4

    Article  CAS  PubMed  Google Scholar 

  14. Kim JY, Ash RT, Ceballos-Diaz C, Levites Y, Golde TE, Smirnakis SM, Jankowsky JL (2013) Viral transduction of the neonatal brain delivers controllable genetic mosaicism for visualising and manipulating neuronal circuits in vivo. Eur J Neurosci 37(8):1203–1220. https://doi.org/10.1111/ejn.12126

    Article  PubMed  PubMed Central  Google Scholar 

  15. Werling NJ, Satkunanathan S, Thorpe R, Zhao Y (2015) Systematic comparison and validation of quantitative real-time PCR methods for the quantitation of adeno-associated viral products. Hum Gene Ther Methods 26(3):82–92. https://doi.org/10.1089/hgtb.2015.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

J.M.K.M.D. and S.N.W. were funded by the ERC grant Somabio (260862), T.R.M. and S.N.W. were funded by the NC3Rs (NC/L001780/1). R.K. and S.N.W. received funding from MRC grants MR/P026494/1 and MR/R015325/1, and from SPARKS grant 17UCL01. J.A.D. is funded by CONICYT Becas Chile Doctoral Fellowship Program 72160294.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajvinder Karda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Diaz, J.A. et al. (2020). Continual Conscious Bioluminescent Imaging in Freely Moving Mice. In: Ripp, S. (eds) Bioluminescent Imaging. Methods in Molecular Biology, vol 2081. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9940-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9940-8_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9939-2

  • Online ISBN: 978-1-4939-9940-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics