Skip to main content

Biophysical Methods for Characterization of Antibody-Drug Conjugates

  • Protocol
  • First Online:
Antibody-Drug Conjugates

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2078))

Abstract

Antibody-drug conjugates (ADC) are made up of three components: (1) a mAb specific to cells of choice, (2) a small molecule with desired end goal, and (3) a linker to covalently link drug molecule to the antibody. Bringing together the mAb, drug molecule, and the linker results in the formation of an immunoconjugate designed to selectively deliver the drug molecule to a cell of interest. Synergic effects of the mAb and drug molecule lead to destroying the target tumor cells while leaving the normal cells unharmed. However, the development of ADCs is associated with challenges due to the heterogeneity of the ADC molecules created from the conjugation process. Addition of the linker and drug moieties during processing as well as the hydrophobicity of the drug itself can lead to structural changes that may affect the stability and functional profile of the conjugated molecule. Furthermore, linkers site of attachment plays a major role in determining the conformational and colloidal properties of the ADCs. In this chapter, several characterization methods are introduced to determine the biophysical characteristics of the ADC. Protocols, data analysis as well as notes for circular dichroism, intrinsic fluorescence, ANS fluorescence, differential scanning calorimetry, and dynamic scanning fluorimetry are outlined in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chari RVJ (2008) Targeted Cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res 41:98–107

    Article  CAS  Google Scholar 

  2. Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23:1137

    Article  CAS  Google Scholar 

  3. Sun MMC, Beam KS, Cerveny CG et al (2005) Reduction−alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjug Chem 16:1282–1290

    Article  CAS  Google Scholar 

  4. Baldwin AD, Kiick KL (2011) Tunable degradation of Maleimide–Thiol adducts in reducing environments. Bioconjug Chem 22:1946–1953

    Article  CAS  Google Scholar 

  5. Chih H-W, Gikanga B, Yang Y et al (2011) Identification of amino acid residues responsible for the release of free drug from an antibody–drug conjugate utilizing lysine–Succinimidyl Ester chemistry. J Pharm Sci 100:2518–2525

    Article  CAS  Google Scholar 

  6. Johnson WC Jr (1988) Secondary structure of proteins through circular dichroism spectroscopy. Annu Rev Biophys Biophys Chem 17:145–166

    Article  CAS  Google Scholar 

  7. Venyaminov SY, Vassilenko KS (1994) Determination of protein tertiary structure class from circular dichroism spectra. Anal Biochem 222:176–184

    Article  CAS  Google Scholar 

  8. Johnson WC (1999) Analyzing protein circular dichroism spectra for accurate secondary structures. Proteins Struct Funct Genet 35:307–312

    Article  CAS  Google Scholar 

  9. Levitt M, Chothia C (1976) Structural patterns in globular proteins. Nature 261:552–558

    Article  CAS  Google Scholar 

  10. Rodger A, Marrington R, Roper D et al (2005) Circular Dichroism spectroscopy for the study of protein-ligand interactions. In: Ulrich Nienhaus G (ed) Protein-ligand interactions: methods and applications. Humana Press, Totowa, NJ, pp 343–363

    Chapter  Google Scholar 

  11. Sreerama N, Venyaminov S, Woody RW (2001) Analysis of protein circular Dichroism spectra based on the tertiary structure classification. Anal Biochem 299:271–274

    Article  CAS  Google Scholar 

  12. Garidel P, Hegyi M, Bassarab S et al (2008) A rapid, sensitive and economical assessment of monoclonal antibody conformational stability by intrinsic tryptophan fluorescence spectroscopy. Biotechnol J 3:1201–1211

    Article  CAS  Google Scholar 

  13. Guo J, Kumar S, Chipley M et al (2016) Characterization and higher-order structure assessment of an Interchain cysteine-based ADC: impact of drug loading and distribution on the mechanism of aggregation. Bioconjug Chem 27:604–615

    Article  CAS  Google Scholar 

  14. Guo J, Kumar S, Prashad A et al (2014) Assessment of physical stability of an antibody drug conjugate by higher order structure analysis: impact of Thiol- Maleimide chemistry. Pharm Res 31(7):1710–1723

    Article  CAS  Google Scholar 

  15. Kubista M, Sjöback R, Eriksson S et al (1994) Experimental correction for the inner-filter effect in fluorescence spectra. Analyst 119:417–419

    Article  CAS  Google Scholar 

  16. Anonymous (2006) Protein Fluorescence. In: Lakowicz JR (ed) Principles of fluorescence spectroscopy. Springer US, Boston, MA, pp 529–575

    Google Scholar 

  17. Wakankar AA, Feeney MB, Rivera J et al (2010) Physicochemical stability of the antibody−drug conjugate Trastuzumab-DM1: changes due to modification and conjugation processes. Bioconjug Chem 21:1588–1595

    Article  CAS  Google Scholar 

  18. Wen J, Arthur K, Chemmalil L et al (2012) Applications of differential scanning calorimetry for thermal stability analysis of proteins: qualification of DSC. J Pharm Sci 101:955–964

    Article  CAS  Google Scholar 

  19. Freire E (1995) Differential scanning Calorimetry. In: Shirley BA (ed) Protein stability and folding: theory and practice. Humana Press, Totowa, NJ, pp 191–218

    Chapter  Google Scholar 

  20. Bastiansen O (1977) J. J. Christensen, L. D. Hansen, and R. M. Izatt: Handbook of proton ionization heats and related thermodynamic quantities. J. Wiley and Sons, New York 1976. 269 Seiten, Preis: $28.50. Berichte der Bunsengesellschaft für physikalische Chemie 81:540–540

    Google Scholar 

  21. He F, Hogan S, Latypov RF et al (2010) High throughput thermostability screening of monoclonal antibody formulations. J Pharm Sci 99:1707–1720

    Article  CAS  Google Scholar 

  22. Samra HS, He F (2012) Advancements in high throughput biophysical technologies: applications for characterization and screening during early formulation development of monoclonal antibodies. Mol Pharm 9:696–707

    Article  CAS  Google Scholar 

  23. Kung CE, Reed JK (1989) Fluorescent molecular rotors: a new class of probes for tubulin structure and assembly. Biochemistry 28:6678–6686

    Article  CAS  Google Scholar 

  24. Lindgren M, Sorgjerd K, Hammarstrom P (2005) Detection and characterization of aggregates, prefibrillar amyloidogenic oligomers, and protofibrils using fluorescence spectroscopy. Biophys J 88:4200–4212

    Article  CAS  Google Scholar 

  25. Nelson R, Sawaya MR, Balbirnie M et al (2005) Structure of the cross-beta spine of amyloid-like fibrils. Nature 435:773–778

    Article  CAS  Google Scholar 

  26. Sawaya MR, Sambashivan S, Nelson R et al (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447:453–457

    Article  CAS  Google Scholar 

  27. Kayser V, Chennamsetty N, Voynov V et al (2011) Conformational stability and aggregation of therapeutic monoclonal antibodies studied with ANS and Thioflavin T binding. MAbs 3:408–411

    Article  Google Scholar 

  28. Brummitt RK, Nesta DP, Chang L et al (2011) Nonnative aggregation of an IgG1 antibody in acidic conditions, part 2: nucleation and growth kinetics with competing growth mechanisms. J Pharm Sci 100:2104–2119

    Article  CAS  Google Scholar 

  29. Ablinger E, Leitgeb S, Zimmer A (2012) Differential scanning fluorescence approach using a fluorescent molecular rotor to detect thermostability of proteins in surfactant-containing formulations. Int J Pharm 441(1-2):255–260

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mudhivarthi, V.K., Guo, J. (2020). Biophysical Methods for Characterization of Antibody-Drug Conjugates. In: Tumey, L. (eds) Antibody-Drug Conjugates. Methods in Molecular Biology, vol 2078. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9929-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9929-3_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9928-6

  • Online ISBN: 978-1-4939-9929-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics