Skip to main content

Propofol Effects in Breast Cancer Cell Progression: Evidences from In Vitro Studies

  • Protocol
  • First Online:
General Anesthesia Research

Part of the book series: Neuromethods ((NM,volume 150))

  • 629 Accesses

Abstract

Propofol (2,6 diisopropylphenol), belonging to the class of intravenous anesthetics, is largely used as a sedative-hypnotic agent in humans, outlined by lower toxicity and fast resumption from anesthesia. This anesthetic possesses multiple properties by which it exerts many biological functions. Particularly, due to its antioxidant and anti-inflammatory features, many in vitro studies suggested that propofol could have direct inhibitory or promoting effects on cancer cells proliferation, by influencing their activities, especially for breast cancer cells.

In this chapter, we summarize and describe these studies trying to elucidate the molecular mechanisms underlying the roles of propofol in breast cancer progression. Data emerged from these research works suggest that this anesthetic has different effects on breast cancer cell proliferation depending mainly on breast cancer heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Cancer Society (2017) Cancer facts & figures 2017. American Cancer Society, Atlanta. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2017/cancer-facts-and-figures-2017.pdf. Accessed 20 June 2018

  2. DeSantis CE, Lin CC, Mariotto AB et al (2014) Cancer treatment and survivorship statistics. CA Cancer J Clin 64(4):252–271

    Article  Google Scholar 

  3. Rafferty EA, Park JM, Philpotts LE et al (2013) Assessing radiologist performance using combined digital mammography and breast tomosynthesis compared with digital mammography alone: results of a multicenter, multireader trial. Radiology 266(1):104–113

    Article  Google Scholar 

  4. Wigmore TJ, Mohammed K, Jhanji S et al (2016) Long-term survival for patients undergoing volatile versus IV anesthesia for Cancer surgery: a retrospective analysis. Anesthesiology 124(1):69–79

    Article  CAS  Google Scholar 

  5. Enlund M, Berglund A, Andreasson K et al (2014) The choice of anaesthetic—sevoflurane or propofol—and outcome from cancer surgery: a retrospective analysis. Ups J Med Sci 119(3):251–261

    Article  Google Scholar 

  6. Lee JH, Kang SH, Kim Y et al (2016) Effects of propofol-based total intravenous anesthesia on recurrence and overall survival in patients after modified radical mastectomy: a retrospective study. Korean J Anesthesiol 69(2):126–132

    Article  CAS  Google Scholar 

  7. Li Q, Zhang L, Han Y et al (2012) Propofol reduces MMPs expression by inhibiting NF-kappaB activity in human MDA-MB-231 cells. Biomed Pharmacother 66(1):52–56

    Article  CAS  Google Scholar 

  8. Ecimovic P, Murray D, Doran P et al (2014) Propofol and bupivacaine in breast cancer cell function in vitro - role of the NET1 gene. Anticancer Res 34(3):1321–1331

    CAS  PubMed  Google Scholar 

  9. Yu B, Gao W, Zhou H et al (2017) Propofol induces apoptosis of breast cancer cells by downregulation of miR-24 signal pathway. Cancer Biomark 21(3):513–519

    Article  Google Scholar 

  10. Siddiqui RA, Zerouga M, Wu M et al (2005) Anticancer properties of propofol-docosahexaenoate and propofol-eicosapentaenoate on breast cancer cells. Breast Cancer Res 7(5):R645

    Article  CAS  Google Scholar 

  11. Harvey KA, Xu Z, Whitley P et al (2010) Characterization of anticancer properties of 2,6-diisopropylphenol-docosahexaenoate and analogues in breast cancer cells. Bioorg Med Chem 18(5):1866–1874

    Article  CAS  Google Scholar 

  12. Garib V, Niggemann B, Zänker KS et al (2002) Influence of non-volatile anesthetics on the migration behavior of the human breast cancer cell line MDA-MB-468. Acta Anaesthesiol Scand 46(7):836–844

    Article  CAS  Google Scholar 

  13. Garib V, Lang K, Niggemann B et al (2005) Propofol-induced calcium signalling and actin reorganization within breast carcinoma cells. Eur J Anaesthesiol 22(8):609–615

    Article  CAS  Google Scholar 

  14. Meng C, Song L, Wang J et al (2017) Propofol induces proliferation partially via downregulation of p53 protein and promotes migration via activation of the Nrf2 pathway in human breast cancer cell line MDA-MB-231. Oncol Rep 37(2):841–848

    Article  CAS  Google Scholar 

  15. Li R, Liu H, Dilger JP et al (2018) Effect of Propofol on breast cancer cell, the immune system, and patient outcome. BMC Anesthesiol 18(1):77

    Article  Google Scholar 

  16. Pross HF, Lotzová E (1993) Role of natural killer cells in cancer. Nat Immun 12:279

    CAS  PubMed  Google Scholar 

  17. Kurokawa H, Murray PA, Damron DS (2002) Profol attenuates β-Adrenoreceptor–mediated signal transduction via a protein kinase C–dependent pathway in Cardiomyocytes. Anesthesiology 96(3):688–698

    Article  CAS  Google Scholar 

  18. Desmond F, McCormack J, Mulligan N et al (2015) Effect of anaesthetic technique on immune cell infiltration in breast cancer: a follow-up pilot analysis of a prospective, randomised, investigator-masked study. Anticancer Res 35(3):1311–1319

    PubMed  Google Scholar 

  19. Kushida A, Inada T, Shingu K (2007) Enhancement of antitumor immunity after propofol treatment in mice. Immunopharmacol Immunotoxicol 29(3–4):477–486

    Article  CAS  Google Scholar 

  20. Ren XF, Li WZ, Meng FY et al (2010) Differential effects of propofol and isoflurane on the activation of T-helper cells in lung cancer patients. Anaesthesia 65(5):478–482

    Article  CAS  Google Scholar 

  21. Li X, Li L, Liang F et al (2018) Anesthetic drug propofol inhibits the expression of interleukin-6, interleukin-8 and cyclooxygenase-2, a potential mechanism for propofol in suppressing tumor development and metastasis. Oncol Lett 15(6):9523–9528

    PubMed  PubMed Central  Google Scholar 

  22. Cho AR, Kwon JY, Kim KH et al (2013) The effects of anesthetics on chronic pain after breast cancer surgery. Anesth Analg 116(3):685–693

    Article  CAS  Google Scholar 

  23. Abdallah FW, Morgan PJ, Cil T et al (2015) Comparing the DN4 tool with the IASP grading system for chronic neuropathic pain screening after breast tumor resection with and without paravertebral blocks: a prospective 6-month validation study. Pain 156(4):740–749

    Article  Google Scholar 

  24. Kim MH, Kim DW, Kim JH et al (2017) Does the type of anesthesia really affect the recurrence-free survival after breast cancer surgery? Oncotarget 8(52):90477–90487

    PubMed  PubMed Central  Google Scholar 

  25. Royds J, Khan AH, Buggy DJ (2016) An update on existing ongoing prospective trials evaluating the effect of anesthetic and analgesic techniques during primary cancer surgery on cancer recurrence or metastasis. Int Anesthesiol Clin 54(4):e76–e83

    Article  Google Scholar 

  26. Subramani S, Poopalalingam R (2014) Bonfils assisted double lumen endobronchial tube placement in an anticipated difficult airway. J Anaesthesiol Clin Pharmacol 30(4):568–570

    Article  Google Scholar 

  27. Weng H, Xu ZY, Liu J et al (2010) Placement of the Univent tube without fiberoptic bronchoscope assistance. Anesth Analg 110(2):508–514

    Article  Google Scholar 

  28. Schuepbach R, Grande B, Camen G et al (2015) Intubation with VivaSight or conventional left-sided double-lumen tubes: a randomized trial. Can J Anaesth 62(7):762–769

    Article  Google Scholar 

  29. Song J, Shen Y, Zhan J et al (2014) Mini profile of potential anticancer properties of propofol. PLoS One 9(12):e114440

    Article  Google Scholar 

  30. Tat T, Jurj A, Selicean C et al (2019) Antiproliferative effects of propofol and lidocaine on the colon adenocarcinoma microenvironment. J BUON 24(1):106–115

    PubMed  Google Scholar 

  31. Xu YJ, Li SY, Cheng Q et al (2016) Effects of anaesthesia on proliferation, invasion and apoptosis of LoVo colon cancer cells in vitro. Anaesthesia 71(2):147–154

    Article  CAS  Google Scholar 

  32. Zhang Z, Zang M, Wang S et al (2018) Effects of propofol on human cholangiocarcinoma and the associated mechanisms. Exp Ther Med 17(1):472–478

    PubMed  PubMed Central  Google Scholar 

  33. Du QH, Xu YB, Zhang MY et al (2013) Propofol induces apoptosis and increases gemcitabine sensitivity in pancreatic cancer cells in vitro by inhibition of nuclear factor-κB activity. World J Gastroenterol 19(33):5485–5492

    Article  Google Scholar 

  34. Freeman J, Crowley PD, Foley AG et al (2019) Effect of perioperative lidocaine, propofol and steroids on pulmonary metastasis in a murine model of breast cancer surgery. Cancers (Basel) 11(5). pii: E613

    Google Scholar 

  35. Kang FC, Wang SC, So EC (2019) Propofol may increase caspase and MAPK pathways, and suppress the Akt pathway to induce apoptosis in MA-10 mouse Leydig tumor cells. Oncol Rep 41(6):3565–3574

    CAS  PubMed  Google Scholar 

  36. Qin Y, Ni J, Kang L et al (2019) Sevoflurane effect on cognitive function and the expression of oxidative stress response proteins in elderly patients undergoing radical surgery for lung cancer. J Coll Physicians Surg Pak 29(1):12–15

    Article  Google Scholar 

  37. Tavassoli FA, Devilee P (2003) World Health Organization classification of tumors: pathology and genetics of tumors of the breast and female genital organs. IARC Press, Lyon

    Google Scholar 

  38. Lakhani SR, Ellis IO, Schnitt SJ et al (2012) WHO classification of tumors of the breast. IARC, Lyon

    Google Scholar 

  39. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  CAS  Google Scholar 

  40. Network CGA (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

    Article  Google Scholar 

  41. Dieci MV, Orvieto E, Dominici M et al (2014) Rare breast cancer subtypes: histological, molecular, and clinical peculiarities. Oncologist 19(8):805–813

    Article  Google Scholar 

  42. Neve RM, Chin K, Fridlyand J et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527

    Article  CAS  Google Scholar 

  43. Bai JJ, Lin CS, Ye HJ et al (2016) Propofol suppresses migration and invasion of breast cancer MDA-MB-231 cells by down-regulating H19. Nan Fang Yi Ke Da Xue Xue Bao 36(9):1255–1259

    CAS  PubMed  Google Scholar 

  44. Yu B, Gao W, Zhou H et al (2018) Propofol induces apoptosis of breast cancer cells by downregulation of miR-24 signal pathway. Cancer Biomark 21(3):513–519

    Article  CAS  Google Scholar 

  45. Du Q, Zhang X, Zhang X et al (2019) Propofol inhibits proliferation and epithelial-mesenchymal transition of MCF-7 cells by suppressing miR-21 expression. Artif Cells Nanomed Biotechnol 47(1):1265–1271

    Article  CAS  Google Scholar 

  46. Deegan CA, Murray D, Doran P et al (2009) Effect of anaesthetic technique on oestrogen receptor-negative breast cancer cell function in vitro. Br J Anaesth 103(5):685–690

    Article  CAS  Google Scholar 

  47. Jaura AI, Flood G, Gallagher HC et al (2014) Differential effects of serum from patients administered distinct anaesthetic techniques on apoptosis in breast cancer cells in vitro: a pilot study. Br J Anaesth 113(Suppl 1):i63–i67

    Article  CAS  Google Scholar 

  48. Buckley A, McQuaid S, Johnson P et al (2014) Effect of anaesthetic technique on the natural killer cell anti-tumour activity of serum from women undergoing breast cancer surgery: a pilot study. Br J Anaesth 113:56–62

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Bimonte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bimonte, S., Cascella, M., Giudice, A., Bifulco, F., Wirz, S., Cuomo, A. (2020). Propofol Effects in Breast Cancer Cell Progression: Evidences from In Vitro Studies. In: Cascella, M. (eds) General Anesthesia Research. Neuromethods, vol 150. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9891-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9891-3_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9890-6

  • Online ISBN: 978-1-4939-9891-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics