Skip to main content

Impact of Anesthetics on Brain Electrical Activity and Principles of pEEG-Based Monitoring During General Anesthesia

  • Protocol
  • First Online:
General Anesthesia Research

Part of the book series: Neuromethods ((NM,volume 150))

Abstract

Starting from the first half of the nineteenth century, investigations proved that anesthetics are able to induce significant modifications in the brain's electrical activity and, in turn, in the recorded electroencephalogram (EEG). The anesthesia-related electrical activity involves different EEG correlates. Stage of anesthesia and type of anesthetics used influence EEG expression. Nevertheless, the complex waves of unprocessed EEG may not be easily interpreted. Moreover, several issues obstacle the utilization of standard EEG in anesthesia. These limitations stimulated the search for easy and solid techniques and tools. The EEG raw signal has been sectioned to extract its core element and to simplify the interpretation of the huge amount of data that it contains. Technically, the increased flexibility, speed, and economy of digital circuits, as well as progress in computer hardware and signal-processing algorithms, induced radical changes in the field of signal processing. This evolutionary process involved the application of mathematical models such as the Fourier analysis and its improvement by the bispectral (BIS) analysis. Technical advances and algorithms allowed to process the EEG raw (processing EEG, pEEG) and extrapolate values (indices) which express the depth of anesthesia (DoA) status and other features (e.g., response to noxious stimuli). Apart from the pEEG-based brain monitoring devices, other instruments work on acoustic evoked potentials. Because many mathematical models are proprietary algorithms, it is usually problematic to precisely interpret mechanisms underlying of DoA monitors.

After its commercialization, in 1994, the BIS analysis-based monitor was intended as the best instrument to follow the cerebral activity during general anesthesia. The availability of this technology was enthusiastically considered as the discovery of the “Holy Grail” of anesthesia monitoring and the definitive solution of one among the major concerns of anesthesia: the awareness phenomenon. After two decades of debates and investigations in the field, the scientific community has understood that this is not completely true.

The aim of this chapter is to dissect the technology and functionality behind these monitors. Explanation of functionality assumes the recognition of the functional mechanisms of anesthetics, specifically their mechanisms of action, from the molecular level to neural correlates, responsible for the anesthetic-induced unconsciousness, maintenance, and recovery of consciousness. Furthermore, concepts of neurophysiology and anesthesia-related electrical activity are offered because they are the functional basis of the brain monitoring devices. The chapter also addresses the limitations of DoA devices and perspectives in brain monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAGA:

Accidental awareness during general anesthesia

AE:

Anesthesia emergence

AEPs:

Acoustic evoked potentials

BAEPs:

Brainstem AEPs

BIS:

Bispectral

BS:

Burst suppression

CNS:

Central nervous system

CSI:

Cerebral state index

DoA:

Depth of anesthesia

DSA:

Density Spectral Array

ECoG:

Electrocorticogram

EEG:

Electroencephalogram

EMG:

Electromyography

ETAC:

End-tidal anesthetic concentration

FFT:

Fast Fourier transform

fMRI:

Functional magnetic resonance imaging

fNIRS:

Functional near-infrared spectroscopy

FT:

Fourier transform

GA:

General anesthesia

GABA:

γ-Aminobutyric acid

hd-EEG:

High-density electroencephalography

LLAEPs:

Long-latency AEPs

LoC:

Loss of consciousness

MAC:

Minimal alveolar concentration

MLAEPs:

Middle-latency AEPs

NMBAs:

Neuromuscular blocking agents

NMDA:

N-methyl-d-aspartate

NO:

Nitrous oxide

pEEG:

Processed electroencephalogram.

PID:

Proportional–integral–derivative

POCD:

Postoperative cognitive dysfunction

POD:

Postoperative delirium

PSI:

Patient State Index

RE:

Response entropy

RoC:

Recovery of consciousness

SE:

State entropy

S-EEG:

Stereo-electroencephalography

SQI:

Signal quality index

SR:

Suppression ratio

References

  1. Hutt A, Hudetz AG (2015) Editorial: general anesthesia: from theory to experiments. Front Syst Neurosci 9:105

    Article  Google Scholar 

  2. Gibbs FA, Gibbs EL, Lennox WG (1937) Effect on the electroencephalogram of certain drugs which influence nervous activity. Arch Intern Med (Chic) 60:154–166

    Article  Google Scholar 

  3. Cascella M, Fiore M, Leone S, Carbone D, Di Napoli R (2019) Current controversies and future perspectives on treatment of intensive care unit delirium in adults. World J Crit Care Med 8(3):18–27

    Article  Google Scholar 

  4. Cascella M (2015) Anesthesia awareness. Can midazolam attenuate or prevent memory consolidation on intraoperative awakening during general anesthesia without increasing the risk of postoperative delirium? Korean J Anesthesiol 68(2):200–202

    Article  CAS  Google Scholar 

  5. Cascella M, Muzio MR, Bimonte S, Cuomo A, Jakobsson JG (2018) Postoperative delirium and postoperative cognitive dysfunction: updates in pathophysiology, potential translational approaches to clinical practice and further research perspectives. Minerva Anestesiol 84(2):246–260

    PubMed  Google Scholar 

  6. Chan MT, Cheng BC, Lee TM, Gin T, CODA Trial Group (2013) BIS-guided anesthesia decreases postoperative delirium and cognitive decline. J Neurosurg Anesthesiol 25:33–42

    Article  Google Scholar 

  7. Cascella M, Bimonte S, Muzio MR (2018) Towards a better understanding of anesthesia emergence mechanisms: research and clinical implications. World J Methodol 8(2):9–16

    Article  Google Scholar 

  8. Cascella M (2018) Emergence from anesthesia: a winding way back. Anaesthesiol Intensive Ther 50(2):168–169

    Article  Google Scholar 

  9. Forman SA, Chin VA (2008) General anesthetics and molecular mechanisms of unconsciousness. Int Anesthesiol Clin 46(3):43–53

    Article  CAS  Google Scholar 

  10. Lee U, Ku S, Noh G, Baek S, Choi B, Mashour GA (2013) Disruption of frontal-parietal communication by ketamine, propofol, and sevoflurane. Anesthesiology 118(6):1264–1275

    Article  CAS  Google Scholar 

  11. Imas OA, Ropella KM, Ward BD, Wood JD, Hudetz AG (2005) Volatile anesthetics disrupt frontal-posterior recurrent information transfer at gamma frequencies in rat. Neurosci Lett 387(3):145–150

    Article  CAS  Google Scholar 

  12. Murphy M, Bruno MA, Riedner BA et al (2011) Propofol anesthesia and sleep: a high-density EEG study. Sleep 34(3):283–291A

    Article  Google Scholar 

  13. Scheib CM (2017) Brainstem influence on Thalamocortical oscillations during anesthesia emergence. Front Syst Neurosci 11:66

    Article  Google Scholar 

  14. Lioudyno MI, Birch AM, Tanaka BS et al (2013) Shaker-related potassium channels in the central medial nucleus of the thalamus are important molecular targets for arousal suppression by volatile general anesthetics. J Neurosci 33(41):16310–16322

    Article  CAS  Google Scholar 

  15. Marchant N, Sanders R, Sleigh J et al (2014) How electroencephalography serves the anesthesiologist. Clin EEG Neurosci 45(1):22–32

    Article  Google Scholar 

  16. Yeom SK, Won DO, Chi SI et al (2017) Spatio-temporal dynamics of multimodal EEG-fNIRS signals in the loss and recovery of consciousness under sedation using midazolam and propofol. PLoS One 12(11):e0187743

    Article  Google Scholar 

  17. Baria AT, Centeno MV, Ghantous ME, Chang PC, Procissi D, Apkarian AV (2018) BOLD temporal variability differentiates wakefulness from anesthesia-induced unconsciousness. J Neurophysiol 119(3):834–848

    Article  Google Scholar 

  18. Hight DF, Voss LJ, García PS, Sleigh JW (2017) Electromyographic activation reveals cortical and sub-cortical dissociation during emergence from general anesthesia. J Clin Monit Comput 31(4):813–823

    Article  Google Scholar 

  19. McCarthy MM, Brown EN, Kopell N (2008) Potential network mechanisms mediating electroencephalographic beta rhythm changes during propofol-induced paradoxical excitation. J Neurosci 28(50):13488–13504

    Article  CAS  Google Scholar 

  20. Hight D, Voss LJ, Garcia PS, Sleigh J (2017) Changes in alpha frequency and power of the electroencephalogram during volatile-based general anesthesia. Front Syst Neurosci 11:36. https://doi.org/10.3389/fnsys.2017.00036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Amzica F (2015) What does burst suppression really mean? Epilepsy Behav 49:234–237

    Article  Google Scholar 

  22. Kroeger D, Amzica F (2007) Hypersensitivity of the anesthesia-induced comatose brain. J Neurosci 27(39):10597–10607

    Article  CAS  Google Scholar 

  23. Brown EN, Lydic R, Schiff ND (2010) General anesthesia, sleep, and coma. N Engl J Med 363(27):2638–2650

    Article  CAS  Google Scholar 

  24. Sloan TB (1998) Anesthetic effects on electrophysiologic recordings. J Clin Neurophysiol 15(3):217–226

    Article  CAS  Google Scholar 

  25. Purdon PL, Pierce ET, Mukamel EA (2013) Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci U S A 110(12):E1142–E1151

    Article  CAS  Google Scholar 

  26. Breshears JD, Roland JL, Sharma M et al (2010) Stable and dynamic cortical electrophysiology of induction and emergence with propofol anesthesia. Proc Natl Acad Sci U S A 107(49):21170–21175

    Article  CAS  Google Scholar 

  27. Chander D, García PS, MacColl JN, Illing S, Sleigh JW (2014) Electroencephalographic variation during end maintenance and emergence from surgical anesthesia. PLoS One 9(9):e106291

    Article  Google Scholar 

  28. Liang Z, Huang C, Li Y et al (2018) Emergence EEG pattern classification in sevoflurane anesthesia. Physiol Meas 39(4):045006

    Article  Google Scholar 

  29. Isley MR, Edmonds HL Jr, Stecker M, American Society of Neurophysiological Monitoring (2009) Guidelines for intraoperative neuromonitoring using raw (analog or digital waveforms) and quantitative electroencephalography: a position statement by the American Society of Neurophysiological Monitoring. J Clin Monit Comput 23:369–390

    Article  Google Scholar 

  30. Castellanos NP, Makarov VA (2006) Recovering EEG brain signals: artifact suppression with wavelet enhanced independent component analysis. J Neurosci Methods 158(2):300–312

    Article  Google Scholar 

  31. Sorensen HV, Jones DL, Heideman MT, Burrus CS (1987) Real-valued fast Fourier transform algorithms. IEEE Trans Signal Process 35:849–863

    Article  Google Scholar 

  32. Cooley JW, Tukey JW (1965) An algorithm for machine calculation of complex fourier series. Math Computation 19:297–301

    Article  Google Scholar 

  33. Sigl JC, Chamoun NG (1994) An introduction to bispectral analysis for the electroencephalogram. J Clin Monit 10(6):392–404

    Article  CAS  Google Scholar 

  34. Rampil IJ (1998) A primer for EEG signal processing in anesthesia. Anesthesiology 89(4):980–1002

    Article  CAS  Google Scholar 

  35. Viertiö-Oja H, Maja V, Särkelä M (2004) Description of the entropy algorithm as applied in the Datex-Ohmeda S/5 entropy module. Acta Anaesthesiol Scand 48(2):154–161

    Article  Google Scholar 

  36. Shannon CE (1948) A mathematical theory of communication. Bell System Techn J 27:623–656

    Article  Google Scholar 

  37. Loomis AL, Harvey EN, Hobart CA (1937) Cerebral states during sleep as studied by human brain potentials. J Exp Psychol 21:127–144

    Article  Google Scholar 

  38. Kreuer S, Wilhelm W (2006) The Narcotrend monitor. Best Pract Res Clin Anaesthesiol 20:111–119

    Article  CAS  Google Scholar 

  39. Schmidt G, Bischoff P, Standl T et al (2003) Narcotrend and bispectral index monitor are superior to classic electroencephalographic parameters for the assessment of anesthetic states during propofol-remifentanil anesthesia. Anesthesiology 99(5):1072–1077

    Article  CAS  Google Scholar 

  40. Jensen EW, Valencia JF, López A et al (2014) Monitoring hypnotic effect and nociception with two EEG-derived indices, qCON and qNOX, during general anaesthesia. Acta Anaesthesiol Scand 58:933–941

    Article  CAS  Google Scholar 

  41. Ching S, Cimenser A, Purdon PL, Brown EN, Kopell NJ (2010) Thalamocortical model for a propofol-induced alpha-rhythm associated with loss of consciousness. Proc Natl Acad Sci U S A 107(52):22665–22670

    Article  CAS  Google Scholar 

  42. Mashour GA (2014) Top-down mechanisms of anesthetic-induced unconsciousness. Front Syst Neurosci 8:115

    Article  Google Scholar 

  43. Drover D, Ortega HR (2006) Patient state index. Best Pract Res Clin Anaesthesiol 20:121–128

    Article  Google Scholar 

  44. Prichep LS, Gugino LD, John ER et al (2004) The patient state index as an indicator of the level of hypnosis under general anaesthesia. Br J Anaesth 92(3):393–939

    Article  CAS  Google Scholar 

  45. Chen X, Tang J, White PF, Wender RH, Ma H, Sloninsky A, Kariger R (2002) A comparison of patient state index and bispectral index values during the perioperative period. Anesth Analg 95(6):1669–1674. table of contents

    Article  Google Scholar 

  46. Schneider G, Mappes A, Neissendorfer A et al (2004) EEG-based indices of anaesthesia: correlation between bispectral index and patient state index? Eur J Anaesthesiol 21(1):6–12

    Article  CAS  Google Scholar 

  47. Zikov T, Bibian S, Dumont GA, Huzmezan M, Ries CR (2006) Quantifying cortical activity during general anesthesia using wavelet analysis. IEEE Trans Biomed Eng 53:617–632

    Article  Google Scholar 

  48. Ruiz-Gimeno P, Soro M, Pérez-Solaz A et al (2005) Comparison of the EEG-based SNAP index and the Bispectral (BIS) index during sevoflurane-nitrous oxide anaesthesia. J Clin Monit Comput 19(6):383–389

    Article  CAS  Google Scholar 

  49. Nievas IF, Spentzas T, Bogue CW (2014) SNAP II index: an alternative to the COMFORT scale in assessing the level of sedation in mechanically ventilated pediatric patients. J Intensive Care Med 29(4):225–228

    Article  Google Scholar 

  50. Plourde G (2006) Auditory evoked potentials. Best Pract Res Clin Anaesthesiol 20(1):129–139

    Article  CAS  Google Scholar 

  51. Weber F, Zimmermann M, Bein T (2005) The impact of acoustic stimulation on the AEP monitor/2 derived composite auditory evoked potential index under awake and anesthetized conditions. Anesth Analg 101(2):435–439

    Article  Google Scholar 

  52. Avidan MS, Zhang L, Burnside BA et al (2008) Anesthesia awareness and the bispectral index. N Engl J Med 358:1097–1108

    Article  CAS  Google Scholar 

  53. American Society of Anesthesiologists Task Force on Intraoperative Awareness (2006) Practice advisory for intraoperative awareness and brain function monitoring: a report by the American Society of Anesthesiologists Task Force on Intraoperative Awareness. Anesthesiology 104(4):847–864

    Article  Google Scholar 

  54. Australian and New Zealand College of Anaesthetists (ANZCA) Guidelines on monitoring during anaesthesia. Available at: http://www.anzca.edu.au/documents/ps18-2015-guidelineson-monitoring-during-anaesthe.pdf. Updated December 2015. Accessed 29 May 2019

  55. Checketts MR, Alladi R, Ferguson K et al (2016) Association of Anaesthetists of Great Britain and Ireland. Recommendations for standards of monitoring during anaesthesia and recovery 2015: Association of Anaesthetists of Great Britain and Ireland. Anaesthesia 71:85–93

    Article  CAS  Google Scholar 

  56. Aldecoa C, Bettelli G, Bilotta F et al (2017) European Society of Anaesthesiology evidence-based and consensus-based guideline on postoperative delirium. Eur J Anaesthesiol 34:192–214

    Article  Google Scholar 

  57. Wang ZH, Chen H, Yang YL et al (2017) Bispectral index can reliably detect deep sedation in mechanically ventilated patients: a prospective multicenter validation study. Anesth Analg 125(1):176–183

    Article  Google Scholar 

  58. Cascella M, Fusco R, Caliendo D (2017) Anesthetic dreaming, anesthesia awareness and patient satisfaction after deep sedation with propofol target controlled infusion: a prospective cohort study of patients undergoing day case breast surgery. Oncotarget 8(45):79248–79256

    Article  Google Scholar 

  59. Nunes RR, Cavalcante SL (2007) Influência do bloqueio neuromuscular despolarizante nas entropias. São Paulo Med J 125(Suppl):126

    Google Scholar 

  60. Nunes RR, Porto VC, Miranda VT, de Andrade NQ, Carneiro LM (2012) Risk factor for intraoperative awareness. Rev Bras Anestesiol 62(3):365–374

    Article  Google Scholar 

  61. Schuller PJ, Newell S, Strickland PA, Barry JJ (2015) Response of bispectral index to neuromuscular block in awake volunteers. Br J Anaesth 115(Suppl 1):i95

    Article  Google Scholar 

  62. Cascella M, Bifulco F, Viscardi D, Tracey MC, Carbone D, Cuomo A (2016) Limitation in monitoring depth of anesthesia: a case report. J Anesth 30(2):345–348

    Article  Google Scholar 

  63. Vereecke HE, Struys MM, Mortier EP (2003) A comparison of bispectral index and ARX-derived auditory evoked potential index in measuring the clinical interaction between ketamine and propafol anaesthesia. Anaesthesia 58:957–961

    Article  CAS  Google Scholar 

  64. Akeju O, Pavone KJ, Westover MB et al (2014) A comparison of propofol- and dexmedetomidine-induced electroencephalogram dynamics using spectral and coherence analysis. Anesthesiology 121:978–989

    Article  CAS  Google Scholar 

  65. Mashour GA, Pryor KO (2015) Consciousness, memory, and anesthesia. In: Miller RD (ed) Miller's Anesthesia, 8th edn. Churchill Livingstone, Philadelphia, pp 287–289

    Google Scholar 

  66. Boly M, Moran R, Murphy M et al (2012) Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness. J Neurosci 32(20):7082–7090

    Article  CAS  Google Scholar 

  67. Flores FJ, Hartnack KE, Fath AB et al (2017) Thalamocortical synchronization during induction and emergence from propofol-induced unconsciousness. Proc Natl Acad Sci U S A 114(32):E6660–E6668

    Article  CAS  Google Scholar 

  68. Liu F, Stephen EP, Prerau MJ, Purdon PL (2019) Sparse multi-task inverse covariance estimation for connectivity analysis in EEG source space. Int IEEE EMBS Conf Neural Eng 2019:299–302

    PubMed  Google Scholar 

  69. Brown EN, Purdon PL, Akeju O, An J (2018) Using EEG markers to make inferences about anaesthetic-induced altered states of arousal. Br J Anaesth 121(1):325–327

    Article  CAS  Google Scholar 

  70. Jensen EW (2018) New findings and trends for depth of anesthesia monitoring. Korean J Anesthesiol 71(5):343–344

    Article  Google Scholar 

  71. Liu N, Chazot T, Hamada S et al (2011) Closed-loop coadministration of propofol and remifentanil guided by bispectral index: a randomized multicenter study. Anesth Analg 112(3):546–557

    Article  CAS  Google Scholar 

  72. Orliaguet GA, Benabbes Lambert F, Chazot T et al (2015) Feasibility of closed-loop titration of propofol and remifentanil guided by the bispectral monitor in pediatric and adolescent patients: a prospective randomized study. Anesthesiology 122(4):759–767

    Article  CAS  Google Scholar 

  73. Liu N, Lory C, Assenzo V et al (2015) Feasibility of closed-loop co-administration of propofol and remifentanil guided by the bispectral index in obese patients: a prospective cohort comparison. Br J Anaesth 114(4):605–614

    Article  CAS  Google Scholar 

  74. West N, van Heusden K, Görges M et al (2018) Design and evaluation of a closed-loop anesthesia system with robust control and safety system. Anesth Analg 127(4):883–894

    Article  Google Scholar 

  75. Pasin L, Nardelli P, Pintaudi M et al (2018) Closed-loop delivery systems versus manually controlled administration of total IV anesthesia: a meta-analysis of randomized clinical trials. Anesth Analg 124(2):456–464

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Cascella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cascella, M. (2020). Impact of Anesthetics on Brain Electrical Activity and Principles of pEEG-Based Monitoring During General Anesthesia. In: Cascella, M. (eds) General Anesthesia Research. Neuromethods, vol 150. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9891-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9891-3_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9890-6

  • Online ISBN: 978-1-4939-9891-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics