Skip to main content

SDS-PAGE and Dot Blot Autoradiography: Tools for Quantifying Histidine Kinase Autophosphorylation

  • Protocol
  • First Online:
Histidine Phosphorylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2077))

Abstract

Histidine kinases play a vital role in bacterial signal transduction. However, methods for studying the activity of histidine kinases in vitro are limited in comparison to those for investigating serine, threonine, and tyrosine kinases, largely due to the lability of the phosphoramidate (P-N) bond. Here, we describe two useful methods for quantifying histidine kinase autophosphorylation: SDS-PAGE autoradiography and dot blot autoradiography/scintillation counting.

Jonathan T. Fischer and Ilana Heckler contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parkinson JS, Kofoid EC (1992) Communication modules in bacterial signaling proteins. Annu Rev Genet 26:71–112

    Article  CAS  Google Scholar 

  2. Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    Article  CAS  Google Scholar 

  3. Jung K, Fried L, Behr S, Heermann R (2012) Histidine kinases and response regulators in networks. Curr Opin Microbiol 15:118–124

    Article  CAS  Google Scholar 

  4. Szurmant H, Bu L, Brooks CL, Hoch JA (2008) An essential sensor histidine kinase controlled by transmembrane helix interactions with its auxiliary proteins. Proc Natl Acad Sci U S A 105:5891–5896

    Article  CAS  Google Scholar 

  5. Hossain S, Boon EM (2017) Discovery of a novel nitric oxide binding protein and nitric oxide-responsive signaling pathway in Pseudomonas aeruginosa. ACS Infect Dis 3:454–461

    Article  CAS  Google Scholar 

  6. Arora DP, Boon EM (2012) Nitric oxide regulated two-component signaling in Pseudoalteromonas atlantica. Biochem Biophys Res Commun 421:521–526

    Article  CAS  Google Scholar 

  7. Price MS, Chao LY, Marletta MA (2007) Shewanella oneidensis MR-1 H-NOX regulation of a histidine kinase by nitric oxide. Biochemistry 46:13677–13683

    Article  CAS  Google Scholar 

  8. Nixon BT, Ronson CW, Ausubel FM (1986) Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc Natl Acad Sci U S A 83:7850–7854

    Article  CAS  Google Scholar 

  9. Ronson CW, Nixon BT, Ausubel FM (1987) Conserved domains in bacterial regulatory proteins that respond to environmental stimuli. Cell 49:579–581

    Article  CAS  Google Scholar 

  10. Uhl MA, Miller JF (1996) Integration of multiple domains in a two-component sensor protein: the Bordetella pertussis BvgAS phosphorelay. EMBO J 15:1028–1036

    Article  CAS  Google Scholar 

  11. Gallo R, Provenzano C, Carbone R, Di Fiore PP, Castellani L, Falcone G, Alemà S (1997) Regulation of the tyrosine kinase substrate Eps8 expression by growth factors, v-Src and terminal differentiation. Oncogene 15:1929–1936

    Article  CAS  Google Scholar 

  12. Wei Y, Yu L, Bowen J, Gorovsky MA, Allis CD (1999) Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell 97:99–109

    Article  CAS  Google Scholar 

  13. Sarg B, Helliger W, Talasz H, Förg B, Lindner HH (2006) Histone H1 phosphorylation occurs site-specifically during interphase and mitosis: identification of a novel phosphorylation site on histone H1. J Biol Chem 281:6573–6580

    Article  CAS  Google Scholar 

  14. Stock JB, Stock AM, Mottonen JM (1990) Signal transduction in bacteria. Nature 344:395–400

    Article  CAS  Google Scholar 

  15. Kee JM, Muir TW (2012) Chasing phosphohistidine, an elusive sibling in the phosphoamino acid family. ACS Chem Biol 7:44–51

    Article  CAS  Google Scholar 

  16. Ueno TB, Johnson RA, Boon EM (2015) Optimized assay for the quantification of histidine kinase autophosphorylation. Biochem Biophys Res Commun 465:331–337

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH GM118894 and NSF CHE-1607532.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth M. Boon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fischer, J.T., Heckler, I., Boon, E.M. (2020). SDS-PAGE and Dot Blot Autoradiography: Tools for Quantifying Histidine Kinase Autophosphorylation. In: Eyers, C. (eds) Histidine Phosphorylation. Methods in Molecular Biology, vol 2077. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9884-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9884-5_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9883-8

  • Online ISBN: 978-1-4939-9884-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics