Skip to main content

Detection and Characterization of Transposons in Bacteria

  • Protocol
  • First Online:
Horizontal Gene Transfer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2075))

Abstract

Bacterial transposons, through their ability to transfer DNA sequences from one position in the genome to another, play a central role in the shape and the evolution of genomes. Extensive studies have been performed during the last five decades to understand the molecular mechanisms involved in the transposition of a variety of elements. Among the methods used, the papillation and the mating out coupled to arbitrary primed PCR assays described in this chapter are widely used as very powerful approaches to detect and characterize transposition events in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62(3):725–774. Review

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Curcio MJ, Derbyshire KM (2003) The outs and ins of transposition:from mu to kangaroo. Nat Rev Mol Cell Biol 4(11):865–877. Review. https://doi.org/10.1038/nrm1241

    Article  CAS  PubMed  Google Scholar 

  3. Siguier P, Gourbeyre E, Varani A, Ton-Hoang B, Chandler M (2015) Everyman’s guide to bacterial insertion sequences. Microbiol Spectr 3(2). https://doi.org/10.1128/microbiolspec.MDNA3-0030-2014. MDNA3-0030-2014. Review. PMID: 26104715

  4. Luria SE, Delbrück M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28(6):491–511

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Huisman O, Kleckner N (1987) A new generalizable test for detection of mutations affecting Tn10 transposition. Genetics 116(2):185–189

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Makris JC, Nordmann PL, Reznikoff WS (1988) Mutational analysis of insertion sequence 50 (IS50) and transposon 5 (Tn5) ends. Proc Natl Acad Sci U S A 85(7):2224–2228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lu F, Craig NL (2000) Isolation and characterization of Tn7 transposase gain-of-function mutants: a model for transposase activation. EMBO J 19(13):3446–3457. https://doi.org/10.1093/emboj/19.13.3446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Serre MC, Turlan C, Bortolin M, Chandler M (1995) Mutagenesis of the IS1 transposase: importance of a his-Arg-Tyr triad for activity. J Bacteriol 177(17):5070–5077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Derbyshire KM, Grindley ND (1996) Cis preference of the IS903 transposase IS mediated by a combination of transposase instability and inefficient translation. Mol Microbiol 21(6):1261–1272

    Article  CAS  PubMed  Google Scholar 

  10. Twiss E, Coros AM, Tavakoli NP, Derbyshire KM (2005) Transposition is modulated by a diverse set of host factors in Escherichia coli and is stimulated by nutritional stress. Mol Microbiol 57(6):1593–1607. https://doi.org/10.1111/j.1365-2958.2005.04794.x

    Article  CAS  PubMed  Google Scholar 

  11. Lee I, Harshey RM (2001) Importance of the conserved CA dinucleotide at mu termini. J Mol Biol 314(3):433–444. https://doi.org/10.1006/jmbi.2001.5177

    Article  CAS  PubMed  Google Scholar 

  12. Pajunen MI, Rasila TS, Happonen LJ, Lamberg A, Haapa-Paananen S, Kiljunen S, Savilahti H (2010) Universal platform for quantitative analysis of DNA transposition. Mob DNA 1(1):24. https://doi.org/10.1186/1759-8753-1-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lambin M, Nicolas E, Oger CA, Nguyen N, Prozzi D, Hallet B (2012) Separate structural and functional domains of Tn4430 transposase contribute to target immunity. Mol Microbiol 83(4):805–820. https://doi.org/10.1111/j.1365-2958.2012.07967.x

    Article  CAS  PubMed  Google Scholar 

  14. Galas DJ, Chandler M (1982) Structure and stability of Tn9-mediated cointegrates. Evidence for two pathways of transposition. J Mol Biol 154(2):245–272

    Article  CAS  PubMed  Google Scholar 

  15. Johnson RC, Reznikoff WS (1984) Copy number control of Tn5 transposition. Genetics 107(1):9–18

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Polard P, Prère MF, Fayet O, Chandler M (1992) Transposase-induced excision and circularization of the bacterial insertion sequence IS911. EMBO J 11(13):5079–5090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mendiola MV, Bernales I, de la Cruz F (1994) Differential roles of the transposon termini in IS91 transposition. Proc Natl Acad Sci U S A 91(5):1922–1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ton-Hoang B, Guynet C, Ronning DR, Cointin-Marty B, Dyda F, Chandler M (2005) Transposition of ISHp608, member of a novel family of bacterial insertion sequences. EMBO J 24(18):3325–3338. https://doi.org/10.1038/sj.emboj.7600787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kleckner N, Barker DF, Ross DG, Botstein D (1978) Properties of the translocatable tetracycline-resistance element Tn10 in Escherichia coli and bacteriophage lambda. Genetics 90(3):427–461

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18(24):7213–7218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guynet C, Achard A, Ton-Hoang B, Barabas O, Hickman AB, Dyda F, Chandler M (2009) Resetting the site: redirecting integration of an insertion sequence in a predictable way. Mol Cell 34(5):612–619. https://doi.org/10.1016/j.molcel.2009.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pasternak C, Ton-Hoang B, Coste G, Bailone A, Chandler M, Sommer S (2010) Irradiation-induced Deinococcus radiodurans genome fragmentation triggers transposition of a single resident insertion sequence. PLoS Genet 6(1):e1000799. https://doi.org/10.1371/journal.pgen.1000799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Catherine Turlan for careful reading and suggestions and François Cornet, Jean-Yves Bouet, and Roxanne Diaz for discussions concerning this manuscript. This work was supported by the Agence National pour la Recherche (ANR-12-BSV8-0009-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Catherine Guynet or Bao Ton-Hoang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guynet, C., Le, P.T.N., Chandler, M., Ton-Hoang, B. (2020). Detection and Characterization of Transposons in Bacteria. In: de la Cruz, F. (eds) Horizontal Gene Transfer. Methods in Molecular Biology, vol 2075. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9877-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9877-7_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9876-0

  • Online ISBN: 978-1-4939-9877-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics