Skip to main content

Strategies for Increasing Protein Stability

  • Protocol
  • First Online:
Protein Nanotechnology

Abstract

The stability of wild-type proteins is often a hurdle to their practical use in research, industry, and medicine. The route to engineering stability of a protein of interest lies largely with the available data. Where high-resolution structural data is available, rational design, based on fundamental principles of protein chemistry, can improve protein stability. Recent advances in computational biology and the use of nonnatural amino acids have also provided novel rational methods for improving protein stability. Likewise, the explosion of sequence and structural data available in public databases, in combination with improvements in freely available computational tools, has produced accessible phylogenetic approaches. Trawling modern sequence databases can identify the thermostable homologs of a target protein, and evolutionary data can be quickly generated using available phylogenetic tools. Grafting features from those thermostable homologs or ancestors provides stability improvement through a semi-rational approach. Further, molecular techniques such as directed evolution have shown great promise in delivering designer proteins. These strategies are well documented and newly accessible to the molecular biologist, allowing for rapid enhancements of protein stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Costanzo JA, O’Brien CJ, Tiller K et al (2014) Conformational stability as a design target to control protein aggregation. Protein Eng Des Sel 27:157–167. https://doi.org/10.1093/protein/gzu008

    Article  CAS  Google Scholar 

  2. Goldenzweig A, Fleishman S (2018) Principles of protein stability and their application in computational design. Annu Rev Biochem 87:105–129. https://doi.org/10.1146/annurev-biochem

    Article  CAS  Google Scholar 

  3. Yu H, Huang H (2014) Engineering proteins for thermostability through rigidifying flexible sites. Biotechnol Adv 32:308–315. https://doi.org/10.1016/j.biotechadv.2013.10.012

    Article  CAS  Google Scholar 

  4. Kim SJ, Lee JA, Joo JC et al (2010) The development of a thermostable CiP (Coprinus cinereus peroxidase) through in silico design. Biotechnol Prog 26:1038–1046. https://doi.org/10.1002/btpr.408

    Article  CAS  Google Scholar 

  5. Reetz MT, Carballeira JD (2007) Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc 2:891–903. https://doi.org/10.1038/nprot.2007.72

    Article  CAS  Google Scholar 

  6. Glaser F, Pupko T, Paz I et al (2003) ConSurf: identification of functional regions in proteins by surface mapping of phylogenetic information. Bioinformatics 19:163–164. https://doi.org/10.1093/bioinformatics/19.1.163

    Article  CAS  Google Scholar 

  7. Guerois R, Nielsen JE, Serrano L (2002) Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 320:369–387. https://doi.org/10.1016/S0022-2836(02)00442-4

    Article  CAS  Google Scholar 

  8. Liu Y, Kuhlman B (2006) RosettaDesign server for protein design. Nucleic Acids Res 34:235–238. https://doi.org/10.1093/nar/gkl163

    Article  Google Scholar 

  9. Buß O, Rudat J, Ochsenreither K (2018) FoldX as protein engineering tool: better than random based approaches? Comput Struct Biotechnol J. https://doi.org/10.1016/j.csbj.2018.01.002

  10. Dill KA (1990) Dominant forces in protein folding. Biochemistry 29:7133–7155. https://doi.org/10.1021/bi00483a001

    Article  CAS  Google Scholar 

  11. Vogt G, Argos P (1997) Protein thermal stability: hydrogen bonds or internal packing? Fold Des 2:S40–S46. https://doi.org/10.1016/S1359-0278(97)00062-X

    Article  CAS  Google Scholar 

  12. Moore EJ, Zorine D, Hansen WA et al (2017) Enzyme stabilization via computationally guided protein stapling. Proc Natl Acad Sci U S A 114:12472–12477. https://doi.org/10.1073/pnas.1708907114

    Article  CAS  Google Scholar 

  13. Hodgson DRW, Sanderson JM (2004) The synthesis of peptides and proteins containing non-natural amino acids. Chem Soc Rev 33:422–430. https://doi.org/10.1039/b312953p

    Article  CAS  Google Scholar 

  14. Link AJ, Mock ML, Tirrell DA (2003) Non-canonical amino acids in protein engineering. Curr Opin Biotechnol 14:603–609. https://doi.org/10.1016/j.copbio.2003.10.011

    Article  CAS  Google Scholar 

  15. Eswar N, Webb B, Marti-Renom MA, et al (2006) Comparative protein structure modeling using Modeller Curr Protoc Bioinformatics Chapter 5:Unit-5.6

    Google Scholar 

  16. DeLano WL (2002) The PyMOL molecular graphics system. Version 2.0 Schrödinger, LLC

    Google Scholar 

  17. Aronica PGA, Verma C, Popovic B et al (2016) The Parasol Protocol for computational mutagenesis. Protein Eng Des Sel 29:253–261. https://doi.org/10.1093/protein/gzw009

    Article  CAS  Google Scholar 

  18. Greenfield NJ (2006) Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat Protoc 1:2527–2535. https://doi.org/10.1038/nprot.2006.204

    Article  CAS  Google Scholar 

  19. Johnson CM (2013) Differential scanning calorimetry as a tool for protein folding and stability. Arch Biochem Biophys 531:100–109. https://doi.org/10.1016/j.abb.2012.09.008

    Article  CAS  Google Scholar 

  20. Matouschek A, Fersht AR (1991) Protein engineering in analysis of protein folding pathways and stability. Methods Enzymol 202:82–112

    Article  CAS  Google Scholar 

  21. Porebski BT, Buckle AM (2016) Consensus protein design. Protein Eng Des Sel 29:245–251. https://doi.org/10.1093/protein/gzw015

    Article  CAS  Google Scholar 

  22. Wheeler LC, Lim SA, Marqusee S, Harms MJ (2016) The thermostability and specificity of ancient proteins. Curr Opin Struct Biol 38:37–43. https://doi.org/10.1016/j.sbi.2016.05.015

    Article  CAS  Google Scholar 

  23. Risso VA, Gavira JA, Gaucher EA, Sanchez-Ruiz JM (2014) Phenotypic comparisons of consensus variants versus laboratory resurrections of Precambrian proteins. Proteins 82:887–896. https://doi.org/10.1002/prot.24575

    Article  CAS  Google Scholar 

  24. Do CB, Katoh K (2008) Protein multiple sequence alignment. In: Thompson JD, Ueffing M, Schaeffer-Reiss C (eds) Methods in molecular biology. Humana Press, Totowa, NJ, pp 379–413

    Google Scholar 

  25. Bateman A, Martin MJ, O’Donovan C et al (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169. https://doi.org/10.1093/nar/gkw1099

    Article  CAS  Google Scholar 

  26. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  Google Scholar 

  27. Finn RD, Coggill P, Eberhardt RY et al (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285. https://doi.org/10.1093/nar/gkv1344

    Article  CAS  Google Scholar 

  28. Sigrist CJA, De Castro E, Cerutti L et al (2013) New and continuing developments at PROSITE. Nucleic Acids Res 41:344–347. https://doi.org/10.1093/nar/gks1067

    Article  CAS  Google Scholar 

  29. Wilson D, Pethica R, Zhou Y et al (2009) SUPERFAMILY - sophisticated comparative genomics, data mining, visualization and phylogeny. Nucleic Acids Res 37:380–386. https://doi.org/10.1093/nar/gkn762

    Article  CAS  Google Scholar 

  30. Finn RD, Clements J, Arndt W et al (2015) HMMER web server: 2015 update. Nucleic Acids Res 43:W30–W38. https://doi.org/10.1093/nar/gkv397

    Article  CAS  Google Scholar 

  31. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659. https://doi.org/10.1093/bioinformatics/btl158

    Article  CAS  Google Scholar 

  32. Gerlt JA, Bouvier JT, Davidson DB et al (2015) Enzyme function initiative-enzyme similarity tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochim Biophy Acta 1854:1019–1037. https://doi.org/10.1016/j.bbapap.2015.04.015

    Article  CAS  Google Scholar 

  33. Shannon P, Markiel A, Owen O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303.metabolite

    Article  CAS  Google Scholar 

  34. Simossis V, Kleinjung J, Heringa J (2003) An overview of multiple sequence alignment. Curr Protoc Bioinformatics. https://doi.org/10.1002/0471250953.bi0307s03

  35. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  Google Scholar 

  36. Di Tommaso P, Moretti S, Xenarios I et al (2011) T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res 39:13–17. https://doi.org/10.1093/nar/gkr245

    Article  CAS  Google Scholar 

  37. Madej T, Lanczycki CJ, Zhang D et al (2014) MMDB and VAST+: tracking structural similarities between macromolecular complexes. Nucleic Acids Res 42:297–303. https://doi.org/10.1093/nar/gkt1208

    Article  CAS  Google Scholar 

  38. Steipe B, Schiller B, Plückthun A, Steinbacher S (1994) Sequence statistics reliably predict stabilizing mutations in a protein domain. J Mol Biol 240:188–192

    Article  CAS  Google Scholar 

  39. Polizzi KM, Chaparro-Riggers JF, Vazquez-Figueroa E, Bommarius AS (2006) Structure-guided consensus approach to create a more thermostable penicillin G acylase. Biotechnol J 1:531–536. https://doi.org/10.1002/biot.200600029

    Article  CAS  Google Scholar 

  40. Tokuriki N, Stricher F, Schymkowitz J et al (2007) The stability effects of protein mutations appear to be universally distributed. J Mol Biol 369:1318–1332. https://doi.org/10.1016/j.jmb.2007.03.069

    Article  CAS  Google Scholar 

  41. Lehmann M, Wyss M (2001) Engineering proteins for thermostability: the use of sequence alignments versus rational design and directed evolution. Curr Opin Biotechnol 12:371–375. https://doi.org/10.1016/S0958-1669(00)00229-9

    Article  CAS  Google Scholar 

  42. Lehmann M, Pasamontes L, Lassen SF, Wyss M (2000) The consensus concept for thermostability engineering of proteins. Biochim Biophys Acta Protein Struct Mol Enzymol 1543:408–415. https://doi.org/10.1016/S0167-4838(00)00238-7

    Article  CAS  Google Scholar 

  43. Porebski BT, Nickson AA, Hoke DE et al (2015) Structural and dynamic properties that govern the stability of an engineered fibronectin type III domain. Protein Eng Des Sel 28:67–78. https://doi.org/10.1093/protein/gzv002

    Article  CAS  Google Scholar 

  44. Porebski BT, Keleher S, Hollins JJ et al (2016) Smoothing a rugged protein folding landscape by sequence-based redesign. Sci Rep 6:1–14. https://doi.org/10.1038/srep33958

    Article  CAS  Google Scholar 

  45. Jacobs SA, Diem MD, Luo J et al (2012) Design of novel FN3 domains with high stability by a consensus sequence approach. Protein Eng Des Sel 25:107–117. https://doi.org/10.1093/protein/gzr064

    Article  CAS  Google Scholar 

  46. Dai M, Fisher HE, Temirov J et al (2007) The creation of a novel fluorescent protein by guided consensus engineering. Protein Eng Des Sel 20:69–79. https://doi.org/10.1093/protein/gzl056

    Article  CAS  Google Scholar 

  47. Pantoliano MW, Whitlow M, Wood JF et al (1989) Large increases in general stability for subtilisin BPN’ through incremental changes in the free energy of unfolding. Biochemistry 28:7205–7213. https://doi.org/10.1021/bi00444a012

    Article  CAS  Google Scholar 

  48. Blatt LM, Davis JM, Klein SB, Taylor MW (1996) The biologic activity and molecular characterization of a novel synthetic interferon-alpha species, consensus interferon. J Interferon Cytokine Res 16:489–499

    Article  CAS  Google Scholar 

  49. Vazquez-Figueroa E, Yeh V, Broering JM et al (2008) Thermostable variants constructed via the structure-guided consensus method also show increased stability in salts solutions and homogeneous aqueous-organic media. Protein Eng Des Sel 21:673–680. https://doi.org/10.1093/protein/gzn048

    Article  CAS  Google Scholar 

  50. Sullivan BJ, Durani V, Magliery TJ (2011) Triosephosphate isomerase by consensus design: dramatic differences in physical properties and activity of related variants. J Mol Biol 413:195–208. https://doi.org/10.1016/j.jmb.2011.08.001

    Article  CAS  Google Scholar 

  51. Nikolova PV, Henckel J, Lane DP, Fersht AR (1998) Semirational design of active tumor suppressor p53 DNA binding domain with enhanced stability. Proc Natl Acad Sci U S A 95:14675–14680. https://doi.org/10.1073/pnas.95.25.14675

    Article  CAS  Google Scholar 

  52. Wang Q, Buckle AM, Foster NW et al (1999) Design of highly stable functional GroEL minichaperones. Protein Sci 8:2186–2193. https://doi.org/10.1110/ps.8.10.2186

    Article  CAS  Google Scholar 

  53. Ferreiro DU, Cervantes CF, Truhlar SME et al (2007) Stabilizing IκBα by “consensus” design. J Mol Biol 365:1201–1216. https://doi.org/10.1016/j.jmb.2006.11.044

    Article  CAS  Google Scholar 

  54. Gaucher EA, Thomson JM, Burgan MF, Benner SA (2003) Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins. Nature 425:285–288. https://doi.org/10.1038/nature01977

    Article  CAS  Google Scholar 

  55. Gaucher EA, Govindarajan S, Ganesh OK (2008) Palaeotemperature trend for Precambrian life inferred from resurrected proteins. Nature 451:704–707. https://doi.org/10.1038/nature06510

    Article  CAS  Google Scholar 

  56. Clifton BE, Jackson CJ (2016) Ancestral protein reconstruction yields insights into adaptive evolution of binding specificity in solute-binding proteins. Cell Chem Biol 23:236–245. https://doi.org/10.1016/j.chembiol.2015.12.010

    Article  CAS  Google Scholar 

  57. Perez-Jimenez R, Inglés-Prieto A, Zhao Z et al (2011) Single-molecule paleoenzymology probes the chemistry of resurrected enzymes. Nat Struct Mol Biol 18:592–596. https://doi.org/10.1038/nsmb.2020

    Article  CAS  Google Scholar 

  58. Akanuma S (2017) Characterization of reconstructed ancestral proteins suggests a change in temperature of the ancient biosphere. Life 7:33. https://doi.org/10.3390/life7030033

    Article  CAS  Google Scholar 

  59. Williams PD, Pollock DD, Blackburne BP, Goldstein RA (2006) Assessing the accuracy of ancestral protein reconstruction methods. PLoS Comput Biol 2:0598–0605. https://doi.org/10.1371/journal.pcbi.0020069

    Article  CAS  Google Scholar 

  60. Zhang J, Nei M (1997) Accuracies of ancestral amino acid sequences inferred by the parsimony, likelihood, and distance methods. J Mol Evol 44:139–146. https://doi.org/10.1007/PL00000067

    Article  Google Scholar 

  61. Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/msu300

    Article  CAS  Google Scholar 

  62. Kalyaanamoorthy S, Minh BQ, Wong TKF et al (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589. https://doi.org/10.1038/nmeth.4285

    Article  CAS  Google Scholar 

  63. Rambaut A (2006) FigTree. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. http://tree.bio.ed.ac.uk/software/figtree

    Google Scholar 

  64. Yang Z, Rannala B (2012) Molecular phylogenetics: principles and practice. Nat Rev Genet 13:303–314. https://doi.org/10.1038/nrg3186

    Article  CAS  Google Scholar 

  65. Anisimova M, Gil M, Dufayard JF et al (2011) Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst Biol 60:685–699. https://doi.org/10.1093/sysbio/syr041

    Article  Google Scholar 

  66. Minh BQ, Nguyen MAT, Von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 30:1188–1195. https://doi.org/10.1093/molbev/mst024

    Article  CAS  Google Scholar 

  67. Joy JB, Liang RH, McCloskey RM et al (2016) Ancestral reconstruction. PLoS Comput Biol 12:1–20. https://doi.org/10.1371/journal.pcbi.1004763

    Article  CAS  Google Scholar 

  68. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591. https://doi.org/10.1093/molbev/msm088

    Article  CAS  Google Scholar 

  69. Eick GN, Bridgham JT, Anderson DP et al (2017) Robustness of reconstructed ancestral protein functions to statistical uncertainty. Mol Biol Evol 34:247–261. https://doi.org/10.1093/molbev/msw223

    Article  CAS  Google Scholar 

  70. Li Z, Yang Y, Zhan J et al (2013) Energy functions in de novo protein design: current challenges and future prospects. Annu Rev Biophys 42:315–335. https://doi.org/10.1146/annurev-biophys-083012-130315

    Article  CAS  Google Scholar 

  71. Dahiyat BI, Sarisky CA, Mayo SL (1997) De novo protein design: towards fully automated sequence selection. J Mol Biol 273:789–796. https://doi.org/10.1006/jmbi.1997.1341

    Article  CAS  Google Scholar 

  72. Liang S, Grishin NV (2004) Effective scoring function for protein sequence design. Proteins 54:271–281

    Article  CAS  Google Scholar 

  73. Pokala N, Handel TM (2005) Energy functions for protein design: adjustment with protein-protein complex affinities, models for the unfolded state, and negative design of solubility and specificity. J Mol Biol 347:203–227. https://doi.org/10.1016/j.jmb.2004.12.019

    Article  CAS  Google Scholar 

  74. Dai L, Yang Y, Kim HR, Zhou Y (2010) Improving computational protein design by using structure-derived sequence profile. Proteins 78:2338–2348. https://doi.org/10.1002/prot.22746

    Article  CAS  Google Scholar 

  75. Dantas G, Kuhlman B, Callender D et al (2003) A large scale test of computational protein design: folding and stability of nine completely redesigned globular proteins. J Mol Biol 332:449–460. https://doi.org/10.1016/S0022-2836(03)00888-X

    Article  CAS  Google Scholar 

  76. Korkegian A, Black ME, Baker D, Stoddard BL (2005) Computational thermostabilization of an enzyme. Science 308:857–860. https://doi.org/10.1126/science.1107387

    Article  CAS  Google Scholar 

  77. Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43. https://doi.org/10.1128/MMBR.65.1.1-43.2001

    Article  CAS  Google Scholar 

  78. Xiong H, Fenel F, Leisola M, Turunen O (2004) Engineering the thermostability of Trichoderma reesei endo-1,4-β-xylanase II by combination of disulphide bridges. Extremophiles 8:393–400. https://doi.org/10.1007/s00792-004-0400-9

    Article  CAS  Google Scholar 

  79. Kapoor D, Kumar V, Chandrayan SK et al (2008) Replacement of the active surface of a thermophile protein by that of a homologous mesophile protein through structure-guided “protein surface grafting”. Biochim Biophys Acta 1784:1771–1776. https://doi.org/10.1016/j.bbapap.2008.05.007

    Article  CAS  Google Scholar 

  80. Pedone E, Saviano M, Rossi M, Bartolucci S (2001) A single point mutation (Glu85Arg) increases the stability of the thioredoxin from Escherichia coli. Protein Eng 14:255–260. https://doi.org/10.1093/protein/14.4.255

    Article  CAS  Google Scholar 

  81. Vázquez-Figueroa E, Chaparro-Riggers J, Bommarius AS (2007) Development of a thermostable glucose dehydrogenase by a structure-guided consensus concept. ChemBioChem 8:2295–2301. https://doi.org/10.1002/cbic.200700500

    Article  CAS  Google Scholar 

  82. Loening AM, Fenn TD, Wu AM, Gambhir SS (2006) Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Eng Des Sel 19:391–400. https://doi.org/10.1093/protein/gzl023

    Article  CAS  Google Scholar 

  83. Amin N, Liu AD, Ramer S et al (2004) Construction of stabilized proteins by combinatorial consensus mutagenesis. Protein Eng Des Sel 17:787–793. https://doi.org/10.1093/protein/gzh091

    Article  CAS  Google Scholar 

  84. Anbar M, Gul O, Lamed R et al (2012) Improved thermostability of Clostridium thermocellum endoglucanase Cel8A by using consensus-guided mutagenesis. Appl Environ Microbiol 78:3458–3464. https://doi.org/10.1128/AEM.07985-11

    Article  CAS  Google Scholar 

  85. Kumar S, Nussinov R (2001) How do thermophilic proteins deal with heat? Cell Mol Life Sci 58:1216–1233. https://doi.org/10.1007/PL00000935

    Article  CAS  Google Scholar 

  86. Feldwisch J, Tolmachev V, Lendel C et al (2010) Design of an optimized scaffold for affibody molecules. J Mol Biol 398:232–247. https://doi.org/10.1016/j.jmb.2010.03.002

    Article  CAS  Google Scholar 

  87. Badieyan S, Bevan DR, Zhang C (2012) Study and design of stability in GH5 cellulases. Biotechnol Bioeng 109:31–44. https://doi.org/10.1002/bit.23280

    Article  CAS  Google Scholar 

  88. Panigrahi P, Sule M, Ghanate A et al (2015) Engineering proteins for thermostability with iRDP web server. PLoS One 10:1–20. https://doi.org/10.1371/journal.pone.0139486

    Article  CAS  Google Scholar 

  89. Bednar D, Beerens K, Sebestova E et al (2015) FireProt: energy- and evolution-based computational design of thermostable multiple-point mutants. PLoS Comput Biol 11:1–20. https://doi.org/10.1371/journal.pcbi.1004556

    Article  CAS  Google Scholar 

  90. Goldenzweig A, Goldsmith M, Hill SE et al (2016) Automated structure- and sequence-based design of proteins for high bacterial expression and stability. Mol Cell 63:337–346. https://doi.org/10.1016/j.molcel.2016.06.012

    Article  CAS  Google Scholar 

  91. Mate DM, Gonzalez-perez D, Mateljak I et al (2017) The pocket manual of directed evolution: tips and tricks. Elsevier Inc., Amsterdam

    Book  Google Scholar 

  92. Martinez R, Jakob F, Tu R et al (2013) Increasing activity and thermal resistance of Bacillus gibsonii alkaline protease (BgAP) by directed evolution. Biotechnol Bioeng 110:711–720. https://doi.org/10.1002/bit.24766

    Article  CAS  Google Scholar 

  93. Giver L, Gershenson A, Freskgard P-O, Arnold FH (1998) Directed evolution of a thermostable esterase. Proc Natl Acad Sci U S A 95:12809–12813. https://doi.org/10.1073/pnas.95.22.12809

    Article  CAS  Google Scholar 

  94. Salazar O, Cirino PC, Arnold FH (2003) Thermostabilization of a cytochrome P450 peroxygenase. ChemBioChem 4:891–893. https://doi.org/10.1002/cbic.200300660

    Article  CAS  Google Scholar 

  95. Tokuriki N, Jackson CJ, Afriat-Jurnou L et al (2012) Diminishing returns and tradeoffs constrain the laboratory optimization of an enzyme. Nat Commun 3:1257–1259. https://doi.org/10.1038/ncomms2246

    Article  CAS  Google Scholar 

  96. Goldsmith M, Tawfik DS (2012) Directed enzyme evolution: beyond the low-hanging fruit. Curr Opin Struct Biol 22:406–412. https://doi.org/10.1016/j.sbi.2012.03.010

    Article  CAS  Google Scholar 

  97. Copp JN, Hanson-Manful P, Ackerley DF, Patrick WM (2014) Error-prone PCR and effective generation of gene variant libraries for directed evolution. Methods Mol Biol 1179:3–22

    Article  Google Scholar 

  98. Packer MS, Liu DR (2015) Methods for the directed evolution of proteins. Nat Rev Genet 16:379–394. https://doi.org/10.1038/nrg3927

    Article  CAS  Google Scholar 

  99. Bendl J, Stourac J, Sebestova E et al (2016) HotSpot Wizard 2.0: automated design of site-specific mutations and smart libraries in protein engineering. Nucleic Acids Res 44:W479–W487. https://doi.org/10.1093/nar/gkw416

    Article  CAS  Google Scholar 

  100. Wijma HJ, Floor RJ, Jekel PA et al (2014) Computationally designed libraries for rapid enzyme stabilization. Protein Eng Des Sel 27:49–58. https://doi.org/10.1093/protein/gzt061

    Article  CAS  Google Scholar 

  101. Reetz MT, Carballeira JD, Vogel A (2006) Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew Chem Int Ed 45:7745–7751. https://doi.org/10.1002/anie.200602795

    Article  CAS  Google Scholar 

  102. Leemhuis H, Kelly RM, Dijkhuizen L (2009) Directed evolution of enzymes: library screening strategies. IUBMB Life 61:222–228. https://doi.org/10.1002/iub.165

    Article  CAS  Google Scholar 

  103. Martin A, Schmid FX, Sieber V (2003) Proside: a phage-based method for selecting thermostable proteins. Methods Mol Biol 230:57–70. https://doi.org/10.1385/1-59259-396-8:57

    Article  CAS  Google Scholar 

  104. Foit L, Morgan GJ, Kern MJ et al (2009) Optimizing protein stability in vivo. Mol Cell 36:861–871. https://doi.org/10.1016/j.molcel.2009.11.022

    Article  CAS  Google Scholar 

  105. Magliery TJ, Lavinder JJ, Sullivan BJ (2011) Protein stability by number: high-throughput and statistical approaches to one of protein science’s most difficult problems. Curr Opin Chem Biol 15:443–451. https://doi.org/10.1016/j.cbpa.2011.03.015

    Article  CAS  Google Scholar 

  106. Lindman S, Hernandez-Garcia A, Szczepankiewicz O et al (2010) In vivo protein stabilization based on fragment complementation and a split GFP system. Proc Natl Acad Sci U S A 107:19826–19831. https://doi.org/10.1073/pnas.1005689107

    Article  Google Scholar 

  107. Seitz T, Thoma R, Schoch GA et al (2010) Enhancing the stability and solubility of the glucocorticoid receptor ligand-binding domain by high-throughput library screening. J Mol Biol 403:562–577. https://doi.org/10.1016/j.jmb.2010.08.048

    Article  CAS  Google Scholar 

  108. Socha RD, Tokuriki N (2013) Modulating protein stability - directed evolution strategies for improved protein function. FEBS J 280(22):5582–5595

    Article  CAS  Google Scholar 

  109. Shivange AV, Serwe A, Dennig A et al (2012) Directed evolution of a highly active Yersinia mollaretii phytase. Appl Microbiol Biotechnol 95:405–418. https://doi.org/10.1007/s00253-011-3756-7

    Article  CAS  Google Scholar 

  110. Buettner K, Hertel TC, Pietzsch M (2012) Increased thermostability of microbial transglutaminase by combination of several hot spots evolved by random and saturation mutagenesis. Amino Acids 42:987–996. https://doi.org/10.1007/s00726-011-1015-y

    Article  CAS  Google Scholar 

  111. García-Ruiz E, Maté D, Ballesteros A et al (2010) Evolving thermostability in mutant libraries of ligninolytic oxidoreductases expressed in yeast. Microb Cell Factories 9:1–13. https://doi.org/10.1186/1475-2859-9-17

    Article  CAS  Google Scholar 

  112. Xiao H, Bao Z, Zhao H (2015) High throughput screening and selection methods for directed enzyme evolution. Ind Eng Chem Res 54:4011–4020. https://doi.org/10.1021/ie503060a

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashley M. Buckle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chandler, P.G. et al. (2020). Strategies for Increasing Protein Stability. In: Gerrard, J., Domigan, L. (eds) Protein Nanotechnology. Methods in Molecular Biology, vol 2073. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9869-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9869-2_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9868-5

  • Online ISBN: 978-1-4939-9869-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics