Skip to main content

CRISPR/Cas9-Mediated Targeted Mutagenesis in Wheat Doubled Haploids

  • Protocol
  • First Online:
Cereal Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2072))

Abstract

CRISPR/Cas9-based genome editing technology has the potential to revolutionize agriculture, but many plant species and/or genotypes are recalcitrant to conventional transformation methods. Additionally, the long generation time of crop plants poses a significant obstacle to effective application of gene editing technology, as it takes a long time to produce modified homozygous genotypes. The haploid single-celled microspores are an attractive target for gene editing experiments, as they enable generation of homozygous doubled haploid mutants in one generation. Here, we describe optimized methods for genome editing of haploid wheat microspores and production of doubled haploid plants by microspore culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Wheat Genome Sequencing Consortium (IWGSC); IWGSC RefSeq principal investigators, Appels R, et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191

    Google Scholar 

  2. Wang W, Pan Q, He F et al (2018) Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J 1:65–74

    Article  CAS  Google Scholar 

  3. Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci U S A 112:3570–3575

    Article  CAS  Google Scholar 

  4. Sanchez-Leon S, Gil-Humanes J, Ozuna CV (2017) Low-gluten, non-transgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16:902–910

    Article  Google Scholar 

  5. Wang W, Simmonds J, Pan Q et al (2018) Gene editing and mutagenesis reveal inter-cultivar differences and additivity in the contribution of TaGW2 homoeologues to grain size and weight in wheat. Theor Appl Genet 131:2463–2475

    Article  CAS  Google Scholar 

  6. Zhang Z, Hua L, Gupta A et al (2019) Development of an agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnol J 17:1623–1635

    Article  CAS  Google Scholar 

  7. Wang Y, Cheng X, Shan Q et al (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    Article  CAS  Google Scholar 

  8. Ishida Y, Tsunashima M, Hiei Y et al (2015) Wheat (Triticum aestivum L.) transformation using immature embryos. In: Wang K (ed) Agrobacterium protocols, vol vol. 1. Springer, New York, pp 189–198

    Chapter  Google Scholar 

  9. Tian B, Navia-Urrutia M, Chen Y et al (2019) Biolistic transformation of wheat. Methods Mol Biol 1864:117–130

    Article  CAS  Google Scholar 

  10. Tassy C, Barret P (2017) Biolistic transformation of wheat. Methods Mol Biol 1679:141–152

    Article  CAS  Google Scholar 

  11. Li J, Ye X, An B et al (2012) Genetic transformation of wheat: current status and future prospects. Plant Biotechnol Rep 6:183–193

    Article  Google Scholar 

  12. Humphreys DG, Knox RE (2015) Doubled haploid breeding in cereals. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: breeding, biotechnology and molecular tools. Springer International Publishing, Cham, pp 241–290

    Chapter  Google Scholar 

  13. Ferrie AMR (2017) Doubled haploid production in higher plants. In: Thomas B, Murray BG, Murphy DJ (eds) Encyclopedia of applied plant sciences, vol 2. Academic Press, Waltham, MA, pp 147–151

    Chapter  Google Scholar 

  14. Bhowmik P, Ellison E, Polley B et al (2018) Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Sci Rep 8:6502

    Article  Google Scholar 

  15. Doench JG, Fusi N, Sullender M et al (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34:184–191

    Article  CAS  Google Scholar 

  16. Doench JG, Hartenian E, Graham DB et al (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32:1262–1267

    Article  CAS  Google Scholar 

  17. Rajagopalan N, Kagale S, Bhowmik P et al (2018) A two-step method for obtaining highly pure Cas9 nuclease for genome editing, biophysical, and structural studies. Methods Protoc 1:17

    Article  Google Scholar 

  18. Sadasivaiah RS, Perkovic SM, Pearson DC, Postman B (2000) Registration of ‘AC Nanda’ wheat. Crop Sci 40:579–580

    Article  Google Scholar 

  19. Pruitt SC, Mielnicki LM, Stewart CC (2004) Analysis of fluorescent protein expressing cells by flow cytometry. Methods Mol Biol 263:239–258

    CAS  PubMed  Google Scholar 

  20. Hawley TS, Telford WG, Ramezani A et al (2001) Four-color flow cytometric detection of retrovirally expressed red, yellow, green, and cyan fluorescent proteins. BioTechniques 30:1028–1034

    Article  CAS  Google Scholar 

  21. Thomas JB, Conner RL, Graf RJ (2012) Radiant hard red winter wheat. Can J Plant Sci 92:169–175

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge H.M. Wang, J.L. Enns, K.L. Nelson, J.M. Brost, T.D. Orr, and K. Caswell for their contribution to the doubled haploidy protocol development in wheat and B. Polley and H. Song for their contribution to standardization of the microspore transfection protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sateesh Kagale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ferrie, A.M.R., Bhowmik, P., Rajagopalan, N., Kagale, S. (2020). CRISPR/Cas9-Mediated Targeted Mutagenesis in Wheat Doubled Haploids. In: Vaschetto, L. (eds) Cereal Genomics. Methods in Molecular Biology, vol 2072. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9865-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9865-4_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9864-7

  • Online ISBN: 978-1-4939-9865-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics