Skip to main content

Assays for Monitoring Toxoplasma gondii Infectivity in the Laboratory Mouse

  • Protocol
  • First Online:
Toxoplasma gondii

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2071))

Abstract

Toxoplasma is a widespread parasite of animals including many rodents that are a natural part of the transmission cycle between cats, which serve as the definitive host. Although wild rodents, including house mice, are relatively resistant, laboratory mice are highly susceptible to infection. As such, laboratory mice have been used to compare pathogenesis of natural variants and to evaluate the contributions of both host and parasite genes to infection. Protocols are provided here for evaluating acute and chronic infection with different parasite strains in laboratory mice. These protocols should provide uniform standards for evaluating natural variants and attenuated mutants and for comparing outcomes across different studies and between different laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dubey JP (2010) Toxoplasmosis of animals and humans. CRC Press, Boca Raton

    Google Scholar 

  2. Ajzenberg D, Cogné N, Paris L, Bessieres MH, Thulliez P, Fillisetti D, Pelloux H, Marty P, Dardé ML (2002) Genotype of 86 Toxoplasma gondii isolates associated with human congenital toxoplasmosis and correlation with clinical findings. J Infect Dis 186:684–689

    Article  CAS  PubMed  Google Scholar 

  3. Ajzenberg D, Yera H, Marty P, Paris L, Dalle F, Menotti J, Aubert D, Franck J, Bessieres MH, Quinio D, Pelloux H, Delhaes L, Desbois N, Thulliez P, Robert-Gangneux F, Kauffmann-Lacroix C, Pujol S, Rabodonirina M, Bougnoux ME, Cuisenier B, Duhamel C, Duong TH, Filisetti D, Flori P, Gay-Andrieu F, Pratlong F, Nevez G, Totet A, Carme B, Bonnabau H, Darde ML, Villena I (2009) Genotype of 88 Toxoplasma gondii isolates associated with toxoplasmosis in immunocompromised patients and correlation with clinical findings. J Infect Dis 199:1155–1167

    Article  PubMed  Google Scholar 

  4. Howe DK, Sibley LD (1995) Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease. J Infect Dis 172:1561–1566

    Article  CAS  PubMed  Google Scholar 

  5. Hunter CA, Sibley LD (2012) Modulation of innate immunity by Toxoplasma gondii virulence effectors. Nat Rev Microbiol 10:766–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hakimi MA, Olias P, Sibley LD (2017) Toxoplasma effectors targeting host signaling and transcription. Clin Microbiol Rev 30:615–645

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lorenzi H, Khan A, Behnke MS, Namasivayam S, Swapna LS, Hadjithomas M, Karamycheva S, Pinney D, Brunk BP, Ajioka JW, Ajzenberg D, Boothroyd JC, Boyle JP, Darde ML, Diaz-Miranda MA, Dubey JP, Fritz HM, Gennari SM, Gregory BD, Kim K, Saeij JP, Su C, White MW, Zhu XQ, Howe DK, Rosenthal BM, Grigg ME, Parkinson J, Liu L, Kissinger JC, Roos DS, Sibley LD (2016) Local admixture of amplified and diversified secreted pathogenesis determinants shapes mosaic Toxoplasma gondii genomes. Nat Commun 7:10147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Behnke MS, Khan A, Lauron EJ, Jimah JR, Wang Q, Tolia NH, Sibley LD (2015) Rhoptry proteins ROP5 and ROP18 are major murine virulence factors in genetically divergent south american strains of Toxoplasma gondii. PLoS Genet 11:e1005434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Dupont CD, Christian DA, Hunter CA (2012) Immune response and immunopathology during toxoplasmosis. Semin Immunopathol 34:793–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yarovinsky F (2014) Innate immunity to Toxoplasma gondii infection. Nat Rev Immunol 14:109–121

    Article  CAS  PubMed  Google Scholar 

  11. Sibley LD, Boothroyd JC (1992) Virulent strains of Toxoplasma gondii comprise a single clonal lineage. Nature (Lond) 359:82–85

    Article  CAS  Google Scholar 

  12. Su C, Howe DK, Dubey JP, Ajioka JW, Sibley LD (2002) Identification of quantitative trait loci controlling acute virulence in Toxoplasma gondii. Proc Natl Acad Sci U S A 99:10753–10758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mordue DG, Monroy F, La Regina M, Dinarello CA, Sibley LD (2001) Acute toxoplasmosis leads to lethal overproduction of Th1 cytokines. J Immunol 167:4574–4584

    Article  CAS  PubMed  Google Scholar 

  14. Gavrilescu LC, Denkers EY (2001) IFN-g overproduction and high level apoptosis are associated with high but not low virulence Toxoplasma gondii infection. J Immunol 167:902–909

    Article  CAS  PubMed  Google Scholar 

  15. Behnke MS, Dubey JP, Sibley LD (2016) Genetic mapping of pathogenesis determinants in Toxoplasma gondii. Annu Rev Microbiol 70:63–81

    Article  CAS  PubMed  Google Scholar 

  16. Jacot D, Meissner M, Sheiner L, Soldati-Favre D, Striepen B (2014) Genetic manipulation of Toxoplasma gondii. In: Weiss LM, Kim K (eds) Toxoplasma gondii the model apicomplexan: perspectives and methods, 2nd edn. Academic Press, Elsevier, New York, pp 578–611

    Google Scholar 

  17. Su C, Evans D, Cole RH, Kissinger JC, Ajioka JW, Sibley LD (2003) Recent expansion of Toxoplasma through enhanced oral transmission. Science 299:414–416

    Article  CAS  PubMed  Google Scholar 

  18. Liesenfeld O (2002) Oral infection of C57BL/6 mice with Toxoplasma gondii: a new model of inflammatory bowel disease? J Infect Dis 185:S96–S101

    Article  PubMed  Google Scholar 

  19. Dubey JP (1996) WAAP and Pfizer award for excellence in veterinary parasitology research pursuing life cycles and transmission of cyst-forming coccidia of animals and humans. Vet Parasitol 64:13–20

    Article  CAS  PubMed  Google Scholar 

  20. Su CL, Khan A, Zhou P, Majumdar D, Ajzenberg D, Dardé ML, Zhu XQ, Ajioka JW, Rosenthal B, Dubey JP, Sibley LD (2012) Globally diverse Toxoplasma gondii isolates comprise six major clades originating from a small number of distinct ancestral lineages. Proc Natl Acad Sci U S A 109:5844–5849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Howe DK, Summers BC, Sibley LD (1996) Acute virulence in mice is associated with markers on chromosome VIII in Toxoplasma gondii. Infect Immun 64:5193–5198

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pfefferkorn ER, Pfefferkorn LC, Colby ED (1977) Development of gametes and oocysts in cats fed cysts derived from cloned trophozoites of Toxoplasma gondii. J Parasitol 63:158–159

    Article  CAS  PubMed  Google Scholar 

  23. Sibley LD, LeBlanc AJ, Pfefferkorn ER, Boothroyd JC (1992) Generation of a restriction fragment length polymorphism linkage map for Toxoplasma gondii. Genetics 132:1003–1015

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Taylor S, Barragan A, Su C, Fux B, Fentress SJ, Tang K, Beatty WL, Haijj EL, Jerome M, Behnke MS, White M, Wootton JC, Sibley LD (2006) A secreted serine-threonine kinase determines virulence in the eukaryotic pathogen Toxoplasma gondii. Science 314:1776–1780

    Article  CAS  PubMed  Google Scholar 

  25. Dubey JP (2001) Oocyst shedding by cats fed isolated bradyzoites and comparison of infectivity of bradyzoites of the VEG strain Toxoplasma gondii to cats and mice. J Parasitol 87:215–219

    Article  CAS  PubMed  Google Scholar 

  26. Frazer KA, Eskin E, Kang HM, Bogue MA, Hinds DA, Beilharz EJ, Gupta RV, Montgomery J, Morenzoni MM, Nilsen GB, Pethiyagoda CL, Stuve LL, Johnson FM, Daly MJ, Wade CM, Cox DR (2007) A sequence-based variation map of 8.27 million SNPs in inbred mouse strains. Nature 448:1050–1053

    Article  CAS  PubMed  Google Scholar 

  27. Chia R, Achilli F, Festing MF, Fisher EM (2005) The origins and uses of mouse outbred stocks. Nat Genet 37:1181–1186

    Article  CAS  PubMed  Google Scholar 

  28. Yang H, Wang JR, Didion JP, Buus RJ, Bell TA, Welsh CE, Bonhomme F, Yu AH, Nachman MW, Pialek J, Tucker P, Boursot P, McMillan L, Churchill GA, de Villena FP (2011) Subspecific origin and haplotype diversity in the laboratory mouse. Nat Genet 43:648–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lilue J, Muller UB, Steinfeldt T, Howard JC (2013) Reciprocal virulence and resistance polymorphism in the relationship between Toxoplasma gondii and the house mouse. Elife 2:e01298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Roos DS, Donald RGK, Morrissette NS, Moulton AL (1994) Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol 45:28–61

    Google Scholar 

  31. Behnke MS, Khan A, Wootton JC, Dubey JP, Tang K, Sibley LD (2011) Virulence differences in Toxoplasma mediated by amplification of a family of polymorphic pseuodokinases. Proc Natl Acad Sci U S A 108:9631–9636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saeij JP, Boyle JP, Grigg ME, Arrizabalaga G, Boothroyd JC (2005) Bioluminescence imaging of Toxoplasma gondii infection in living mice reveals dramatic differences between strains. Infect Immun 73:695–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tobin CM, Knoll LJ (2012) A patatin-like protein protects Toxoplasma gondii from degradation in a nitric oxide-dependent manner. Infect Immun 80:55–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jensen KD, Camejo A, Melo MB, Cordeiro C, Julien L, Grotenbreg GM, Frickel EM, Ploegh HL, Young L, Saeij JP (2015) Toxoplasma gondii superinfection and virulence during secondary infection correlate with the exact ROP5/ROP18 allelic combination. MBio 6:e02280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Khan A, Ajzenberg D, Mercier A, Demar M, Simon S, Darde ML, Wang Q, Verma SK, Rosenthal BM, Dubey JP, Sibley LD (2014) Geographic separation of domestic and wild strains of Toxoplasma gondii in French Guiana correlates with a monomorphic version of chromosome1a. PLoS Negl Trop Dis 8:e3182

    Article  PubMed  PubMed Central  Google Scholar 

  36. Knoll LJ, Boothroyd JC (1998) Isolation of developmentally regulated genes from Toxoplasma gondii by a gene trap with the positive and negative selectable marker hypoxanthine-xanthine-guanine phosphoribosyltransferase. Mol Cell Biol 18:1–8

    Article  Google Scholar 

  37. Suzuki Y, Yang Q, Remington JS (1995) Genetic resistance against acute toxoplasmosis depends on the strain of Toxoplasma gondii. J Parasitol 81:1032–1034

    Article  CAS  PubMed  Google Scholar 

  38. Sabin AB (1941) Toxoplasmic encephalitis in children. J Am Med Assoc 116:801–807

    Article  Google Scholar 

  39. Donald RGK, Carter D, Ullman B, Roos DS (1996) Insertional tagging, cloning, and expression of the Toxoplasma gondii hypoxanthine-xanthine-guanine phosphoribosyltransferase gene. J Biol Chem 271:14010–14019

    Article  CAS  PubMed  Google Scholar 

  40. Fox BA, Ristuccia JG, Gigley JP, Bzik DJ (2009) Efficient gene replacements in Toxoplasma gondii strains deficient for nonhomologous end joining. Eukaryot Cell 8:520–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huynh MH, Carruthers VB (2009) Tagging of endogenous genes in a Toxoplasma gondii strain lacking Ku80. Eukaryot Cell 8:530–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dubey J (1980) Mouse pathogenicity of Toxoplasma gondii isolated from a goat. Am J Vet Res 41:427–429

    CAS  PubMed  Google Scholar 

  43. Lunde MN, Jacobs L (1983) Antigenic differences between endozoites and cystozoites of Toxoplasma gondii. J Parasitol 65:806–808

    Article  Google Scholar 

  44. Fox BA, Falla A, Rommereim LM, Tomita T, Gigley JP, Mercier C, Cesbron-Delauw MF, Weiss LM, Bzik DJ (2011) Type II Toxoplasma gondii KU80 knockout strains enable functional analysis of genes required for cyst development and latent infection. Eukaryot Cell 10:1193–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dubey JP (1996) Infectivity and pathogenicity of Toxoplasma gondii oocysts for cats. J Parasitol 82:957–961

    Article  CAS  PubMed  Google Scholar 

  46. Reese ML, Zeiner GM, Saeij JP, Boothroyd JC, Boyle JP (2011) Polymorphic family of injected pseudokinases is paramount in Toxoplasma virulence. Proc Natl Acad Sci U S A 108:9625–9630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rutaganira FU, Barks J, Dhason MS, Wang Q, Lopez MS, Long S, Radke JB, Jones NG, Maddirala AR, Janetka JW, El Bakkouri M, Hui R, Shokat KM, Sibley LD (2017) Inhibition of calcium dependent protein kinase 1 (CDPK1) by pyrazolopyrimidine analogs decreases establishment and reoccurrence of central nervous system disease by Toxoplasma gondii. J Med Chem 60:9976–9989. doi:https://doi.org/10.1021/acs.jmedchem.7b01192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hill RD, Gouffon JS, Saxton AM, Su C (2012) Differential gene expression in mice infected with distinct Toxoplasma strains. Infect Immun 80:968–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jauregui LH, Higgins J, Zarlenga D, Dubey JP, Lunney JK (2001) Development of a real-time PCR assay for detection of Toxoplasma gondii in pig and mouse tissues. J Clin Microbiol 39:2065–2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank many former members of the laboratory for developing and refining these protocols over the years, including Mike Behnke, Kevin Brown, Ildiko Dunay, Blima Fux, Dan Howe, Asis Khan, Dana Mordue, and Chunlei Su. We are also grateful to Christopher Hunter and Yasu Suzuki for helpful advice on animal infection models, and to David Bzik, Vern Carruthers, J.P. Dubey, and Laura Knoll for generously providing strains. Supported in part by NIH grants AI118426 and AI034036 to L.D.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. David Sibley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, Q., Sibley, L.D. (2020). Assays for Monitoring Toxoplasma gondii Infectivity in the Laboratory Mouse. In: Tonkin, C. (eds) Toxoplasma gondii. Methods in Molecular Biology, vol 2071. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9857-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9857-9_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9856-2

  • Online ISBN: 978-1-4939-9857-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics