Skip to main content

Genetic Indicators for Calcium Signaling Studies in Toxoplasma gondii

  • Protocol
  • First Online:
Toxoplasma gondii

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2071))

Abstract

Fluctuations of the cytosolic calcium ion (Ca2+) concentration regulate a variety of cellular functions in all eukaryotes. Cells express a sophisticated set of mechanisms to balance the cytosolic Ca2+ levels and the signals that elevate Ca2+ in the cytosol are compensated by mechanisms that reduce it. Alterations in Ca2+-dependent homeostatic mechanisms are the cause of many prominent diseases in humans, such as heart failure or neuronal death.

The genetic tractability of Toxoplasma gondii and the availability of genetic tools enabled the use of Genetically Encoded Calcium Indicators (GECIs) expressed in the cytoplasm, which started a new era in the studies of Toxoplasma calcium signaling. It was finally possible to see Ca2+ oscillations prior to exit of the parasite from host cells. Years after Endo et al showed that ionophores triggered egress, the assumption that oscillations occur prior to egress from host cells has been validated by experiments using GECIs. GECIs allowed the visualization of specific Ca2+ signals in live intracellular parasites and to distinguish these signals from host cell calcium fluctuations. In this chapter we present an overview describing “tried and true” methods of our lab who pioneered the first use of GECI’s in Toxoplasma, including GECI choice, methodology for transfection and selection of ideal clones, their characterization, and the use of GECI-expressing parasites for fluorometric and microscopic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529

    Article  CAS  PubMed  Google Scholar 

  2. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    CAS  PubMed  Google Scholar 

  3. McCombs JE, Palmer AE (2008) Measuring calcium dynamics in living cells with genetically encodable calcium indicators. Methods 46(3):152–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, Bargmann CI, Jayaraman V, Svoboda K, Looger LL (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6(12):875–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tian L, Hires SA, Looger LL (2012) Imaging neuronal activity with genetically encoded calcium indicators. Cold Spring Harb Protoc 2012(6):647–656

    Article  PubMed  Google Scholar 

  6. Zhao Y, Araki S, Wu J, Teramoto T, Chang YF, Nakano M, Abdelfattah AS, Fujiwara M, Ishihara T, Nagai T, Campbell RE (2011) An expanded palette of genetically encoded Ca(2)(+) indicators. Science 333(6051):1888–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Akerboom J, Carreras Calderon N, Tian L, Wabnig S, Prigge M, Tolo J, Gordus A, Orger MB, Severi KE, Macklin JJ, Patel R, Pulver SR, Wardill TJ, Fischer E, Schuler C, Chen TW, Sarkisyan KS, Marvin JS, Bargmann CI, Kim DS, Kugler S, Lagnado L, Hegemann P, Gottschalk A, Schreiter ER, Looger LL (2013) Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci 6:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Suzuki J, Kanemaru K, Iino M (2016) Genetically encoded fluorescent indicators for organellar calcium imaging. Biophys J 111(6):1119–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458):295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Deo C, Lavis LD (2018) Synthetic and genetically encoded fluorescent neural activity indicators. Curr Opin Neurobiol 50:101–108

    Article  CAS  PubMed  Google Scholar 

  11. Dana H, Mohar B, Sun Y, Narayan S, Gordus A, Hasseman JP, Tsegaye G, Holt GT, Hu A, Walpita D, Patel R, Macklin JJ, Bargmann CI, Ahrens MB, Schreiter ER, Jayaraman V, Looger LL, Svoboda K, Kim DS (2016) Sensitive red protein calcium indicators for imaging neural activity. Elife 5:e12727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Bassett JJ, Monteith GR (2017) Genetically encoded calcium indicators as probes to assess the role of calcium channels in disease and for high-throughput drug discovery. Adv Pharmacol 79:141–171

    Article  CAS  PubMed  Google Scholar 

  13. Borges-Pereira L, Budu A, McKnight CA, Moore CA, Vella SA, Hortua Triana MA, Liu J, Garcia CR, Pace DA, Moreno SN (2015) Calcium signaling throughout the Toxoplasma gondii lytic cycle: a study using genetically encoded calcium indicators. J Biol Chem 290(45):26914–26926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hortua Triana MA, MÃrquez-Nogueras KM, Vella SA, Moreno SN, (2018) Calcium signaling and the lytic cycle of the Apicomplexan parasite Toxoplasma gondii. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1865 (11):1846–1856

    Article  CAS  Google Scholar 

  15. Endo T, Sethi KK, Piekarski G (1982) Toxoplasma gondii: calcium ionophore A23187- mediated exit of trophozoites from infected murine macrophages. Exp Parasitol 53(2):179–188.

    Article  CAS  PubMed  Google Scholar 

  16. Sidik SM, Hortua Triana MA, Paul AS, El Bakkouri M, Hackett CG, Tran F, Westwood NJ, Hui R, Zuercher WJ, Duraisingh MT, Moreno SN, Lourido S (2016) Using a genetically encoded sensor to identify inhibitors of Toxoplasma gondii Ca2+ signaling. J Biol Chem 291(18):9566–9580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Striepen B, He CY, Matrajt M, Soldati D, Roos DS (1998) Expression, selection, and organellar targeting of the green fluorescent protein in Toxoplasma gondii. Mol Biochem Parasitol 92(2):325–338

    Article  CAS  PubMed  Google Scholar 

  18. Brooks CF, Johnsen H, van Dooren GG, Muthalagi M, Lin SS, Bohne W, Fischer K, Striepen B (2010) The Toxoplasma apicoplast phosphate translocator links cytosolic and apicoplast metabolism and is essential for parasite survival. Cell Host Microbe 7(1):62–73

    Article  CAS  PubMed  Google Scholar 

  19. Kafsack BF, Pena JD, Coppens I, Ravindran S, Boothroyd JC, Carruthers VB (2009) Rapid membrane disruption by a perforin-like protein facilitates parasite exit from host cells. Science 323(5913):530–533

    Article  CAS  PubMed  Google Scholar 

  20. Brown KM, Lourido S, Sibley LD (2016) Serum albumin stimulates protein kinase G-dependent Microneme secretion in Toxoplasma gondii. J Biol Chem 291(18):9554–9565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stewart RJ, Whitehead L, Nijagal B, Sleebs BE, Lessene G, McConville MJ, Rogers KL, Tonkin CJ (2017) Analysis of Ca(2)(+) mediated signaling regulating Toxoplasma infectivity reveals complex relationships between key molecules. Cell Microbiol 19(4)

    Google Scholar 

  22. Brydges SD, Carruthers VB (2003) Mutation of an unusual mitochondrial targeting sequence of SODB2 produces multiple targeting fates in Toxoplasma gondii. J Cell Sci 116(Pt 22):4675–4685

    Article  CAS  PubMed  Google Scholar 

  23. Wu J, Prole DL, Shen Y, Lin Z, Gnanasekaran A, Liu Y, Chen L, Zhou H, Chen SR, Usachev YM, Taylor CW, Campbell RE (2014) Red fluorescent genetically encoded Ca2+ indicators for use in mitochondria and endoplasmic reticulum. Biochem J 464(1):13–22

    Article  CAS  PubMed  Google Scholar 

  24. Pino P, Foth BJ, Kwok LY, Sheiner L, Schepers R, Soldati T, Soldati-Favre D (2007) Dual targeting of antioxidant and metabolic enzymes to the mitochondrion and the apicoplast of Toxoplasma gondii. PLoS Pathog 3(8):e115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. van Dooren GG, Tomova C, Agrawal S, Humbel BM, Striepen B (2008) Toxoplasma gondii Tic20 is essential for apicoplast protein import. Proc Natl Acad Sci U S A 105(36):13574–13579

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wagner JC, Goldfless SJ, Ganesan SM, Lee MC, Fidock DA, Niles JC (2013) An integrated strategy for efficient vector construction and multi-gene expression in Plasmodium falciparum. Malar J 12(1):373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Szymczak-Workman AL, Vignali KM, Vignali DA (2012) Design and construction of 2A peptide-linked multicistronic vectors. Cold Spring Harb Protoc 2012(2):199–204

    PubMed  Google Scholar 

  28. Jakot D, Meisner M, Sheiner L, Soldati-Favre D, Striepen B (2014) Genetic manipulation of Toxoplasma gondii, 2nd edn. Academic Press, Elsevier

    Google Scholar 

  29. Waller RF, Keeling PJ, Donald RG, Striepen B, Handman E, Lang-Unnasch N, Cowman AF, Besra GS, Roos DS, McFadden GI (1998) Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci U S A 95(21):12352–12357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Harb OS, Chatterjee B, Fraunholz MJ, Crawford MJ, Nishi M, Roos DS (2004) Multiple functionally redundant signals mediate targeting to the apicoplast in the apicomplexan parasite Toxoplasma gondii. Eukaryot Cell 3(3):663–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bindels DS, Haarbosch L, van Weeren L, Postma M, Wiese KE, Mastop M, Aumonier S, Gotthard G, Royant A, Hink MA, Gadella TW Jr (2017) mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat Methods 14(1):53–56

    Article  CAS  PubMed  Google Scholar 

  32. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  CAS  PubMed  Google Scholar 

  33. Santi PA (2011) Light sheet fluorescence microscopy: a review. J Histochem Cytochem 59(2):129–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Williams MJ, Alonso H, Enciso M, Egarter S, Sheiner L, Meissner M, Striepen B, Smith BJ, Tonkin CJ (2015) Two essential light chains regulate the MyoA lever arm to promote Toxoplasma gliding motility. MBio 6(5):e00845–e00815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fazli MS, Vella SA, Moreno SN, Quinn S (2017) Computational motility tracking of calcium dynamics in Toxoplasma gondii. arXiv preprint arXiv:1708.01871

  36. Fazli MS, Vella SA, Moreno SN, Quinn S (2018). Unsupervised Discovery of Toxoplasma gondii Motility Phenotypes. arXiv preprint arXiv:1801.02591

    Google Scholar 

  37. Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10(8):322–328

    Article  CAS  PubMed  Google Scholar 

  38. Yang Y, Liu N, He Y, Liu Y, Ge L, Zou L, Song S, Xiong W, Liu X (2018) Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP. Nat Commun 9(1):1504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Nebl T, Prieto JH, Kapp E, Smith BJ, Williams MJ, Yates JR 3rd, Cowman AF, Tonkin CJ (2011) Quantitative in vivo analyses reveal calcium-dependent phosphorylation sites and identifies a novel component of the Toxoplasma invasion motor complex. PLoS Pathog 7(9):e1002222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sidik SM, Huet D, Ganesan SM, Huynh MH, Wang T, Nasamu AS, Thiru P, Saeij JPJ, Carruthers VB, Niles JC, Lourido S (2016) A genome-wide CRISPR screen in Toxoplasma identifies essential Apicomplexan genes. Cell 166(6):1423–1435. e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cho JH, Swanson CJ, Chen J, Li A, Lippert LG, Boye SE, Rose K, Sivaramakrishnan S, Chuong CM, Chow RH (2017) The GCaMP-R family of genetically encoded Ratiometric calcium indicators. ACS Chem Biol 12(4):1066–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Park JG, Palmer AE (2015) Measuring the in situ Kd of a genetically encoded Ca2+ sensor. Cold Spring Harb Protoc 2015(1):pdb prot076554

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lin MZ, Schnitzer MJ (2016) Genetically encoded indicators of neuronal activity. Nat Neurosci 19(9):1142–1153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Yasuda R, Nimchinsky EA, Scheuss V, Pologruto TA, Oertner TG, Sabatini BL, Svoboda K (2004) Imaging calcium concentration dynamics in small neuronal compartments. Sci STKE 2004(219):pl5

    PubMed  Google Scholar 

  45. Akerboom J, Chen TW, Wardill TJ, Tian L, Marvin JS, Mutlu S, Calderon NC, Esposti F, Borghuis BG, Sun XR, Gordus A, Orger MB, Portugues R, Engert F, Macklin JJ, Filosa A, Aggarwal A, Kerr RA, Takagi R, Kracun S, Shigetomi E, Khakh BS, Baier H, Lagnado L, Wang SS, Bargmann CI, Kimmel BE, Jayaraman V, Svoboda K, Kim DS, Schreiter ER, Looger LL (2012) Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci 32(40):13819–13840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kuchipudi A, Arroyo-Olarte RD, Hoffmann F, Brinkmann V, Gupta N (2016) Optogenetic monitoring identifies phosphatidylthreonine-regulated calcium homeostasis in Toxoplasma gondii. Microb Cell 3(5):215–223

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was partially funded by NIH grants AI096836, AI128356, and AI110027 to S.N.J.M.

A.C. was supported by an NIH diversity supplement to AI128356. S.V. was partially supported by a fellowship of the Office of the Vice-President for Research, UGA. We would also like to thank Dr. Muthugapatti Kandasamy from the Biomedical Microscopy Core and Julie Nelson from the Cytometry Shared Resource Laboratory of the University of Georgia.

Eric Dykes helped performed the westerns of the cells expressing GCAMP-mScarlet and Christina Moore made the videos used for Fig. 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia N. J. Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vella, S.A., Calixto, A., Asady, B., Li, ZH., Moreno, S.N.J. (2020). Genetic Indicators for Calcium Signaling Studies in Toxoplasma gondii. In: Tonkin, C. (eds) Toxoplasma gondii. Methods in Molecular Biology, vol 2071. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9857-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9857-9_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9856-2

  • Online ISBN: 978-1-4939-9857-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics