Skip to main content

What a Difference 30 Years Makes! A Perspective on Changes in Research Methodologies Used to Study Toxoplasma gondii

  • Protocol
  • First Online:
Toxoplasma gondii

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2071))

Abstract

Toxoplasma gondii is a remarkable species with a rich cell, developmental, and population biology. It is also sometimes responsible for serious disease in animals and humans and the stages responsible for such disease are relatively easy to study in vitro or in laboratory animal models. As a result of all this, Toxoplasma has become the subject of intense investigation over the last several decades, becoming a model organism for the study of the phylum of which it is a member, Apicomplexa. This has led to an ever-growing number of investigators applying an ever-expanding set of techniques to dissecting how Toxoplasma “ticks” and how it interacts with its many hosts. In this perspective piece I first wind back the clock 30 years and then trace the extraordinary pace of methodologies that have propelled the field forward to where we are today. In keeping with the theme of this collection, I focus almost exclusively on the parasite, rather than host side of the equation. I finish with a few thoughts about where the field might be headed—though if we have learned anything, the only sure prediction is that the pace of technological advance will surely continue to accelerate and the future will give us still undreamed of methods for taking apart (and then putting back together) this amazing organism with all its intricate biology. We have so far surely just scratched the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nicolle C, Manceaux L (1908) Sur une infection a corps de Leishman (ou organismes voisins) du gondi. C R Acad Sci III 146:207–209

    Google Scholar 

  2. Dubey JP, Miller NL, Frenkel JK (1970) Toxoplasma gondii life cycle in cats. J Am Vet Med Assoc 157(11):1767–1770

    CAS  PubMed  Google Scholar 

  3. Witte HM, Piekarski G (1970) Oocyst excretion in experimentally infected cats depending on the Toxoplasma strain. Z Parasitenkd 33(4):358–360

    Article  CAS  PubMed  Google Scholar 

  4. Pfefferkorn ER, Pfefferkorn LC (1980) Toxoplasma gondii: genetic recombination between drug resistant mutants. Exp Parasitol 50:305–316

    Article  CAS  PubMed  Google Scholar 

  5. Cornelissen AW, Overdulve JP, van der Ploeg M (1984) Determination of nuclear DNA of five eucoccidian parasites, Isospora (Toxoplasma) gondii, Sarcocystis cruzi, Eimeria tenella, E. acervulina and Plasmodium berghei, with special reference to gamontogenesis and meiosis in I. (T.) gondii. Parasitology 88(Pt 3):531–553

    Article  CAS  PubMed  Google Scholar 

  6. Borst P, Overdulve JP, Weijers PJ, Fase-Fowler F, Van den Berg M (1984) DNA circles with cruciforms from Isospora (Toxoplasma) gondii. Biochim Biophys Acta 781(1–2):100–111

    Article  CAS  PubMed  Google Scholar 

  7. Ferguson DJ, Hutchison WM, Dunachie JF, Siim JC (1974) Ultrastructural study of early stages of asexual multiplication and microgametogony of Toxoplasma gondii in the small intestine of the cat. Acta Pathol Microbiol Scand B: Microbiol Immunol 82(2):167–181

    CAS  Google Scholar 

  8. Wildfuhr W (1966) Electron microscopic studies on the morphology and reproduction of Toxoplasma gondii. II. Observations on the reproduction of Toxoplasma gondii (endodyogeny). Zentralbl Bakteriol Orig 201(1):110–130

    CAS  PubMed  Google Scholar 

  9. Scholtyseck E, Piekarski G (1965) Electron microscopic studies on merozoites of Eimeria (Eimeria perforans and E. stidae) and Toxoplasma gondii. On the systematic position of T. gondii. Z Parasitenkd 26(2):91–115

    Article  CAS  PubMed  Google Scholar 

  10. Ogino N, Yoneda C (1966) The fine structure and mode of division of Toxoplasma gondii. Arch Ophthalmol 75(2):218–227

    Article  CAS  PubMed  Google Scholar 

  11. Handman E, Goding JW, Remington JS (1980) Detection and characterization of membrane antigens of Toxoplasma gondii. J Immunol 124(6):2578–2583

    CAS  PubMed  Google Scholar 

  12. Johnson AM (1985) The antigenic structure of Toxoplasma gondii: a review. Pathology 17(1):9–19

    Article  CAS  PubMed  Google Scholar 

  13. Kasper LH, Crabb JH, Pfefferkorn ER (1983) Purification of a major membrane protein of Toxoplasma gondii by immunoabsorption with a monoclonal antibody. J Immunol 130(5):2407–2412

    CAS  PubMed  Google Scholar 

  14. Couvreur G, Sadak A, Fortier B, Dubremetz JF (1988) Surface antigens of Toxoplasma gondii. Parasitology 97(Pt 1):1–10

    Article  PubMed  Google Scholar 

  15. Ware PL, Kasper LH (1987) Strain-specific antigens of Toxoplasma gondii. Infect Immun 55(3):778–783

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Araujo FG, Handman E, Remington JS (1980) Use of monoclonal antibodies to detect antigens of Toxoplasma gondii in serum and other body fluids. Infect Immun 30(1):12–16

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sethi KK, Endo T, Brandis H (1980) Hybridomas secreting monoclonal antibody with specificity for Toxoplasma gondii. J Parasitol 66(2):192–196

    Article  CAS  PubMed  Google Scholar 

  18. Johnson AM, McNamara PJ, Neoh SH, McDonald PJ, Zola H (1981) Hybridomas secreting monoclonal antibody to Toxoplasma gondii. Aust J Exp Biol Med Sci 59(Pt 3):303–306

    CAS  PubMed  Google Scholar 

  19. Burg JL, Perelman D, Kasper LH, Ware PL, Boothroyd JC (1988) Molecular analysis of the gene encoding the major surface antigen of Toxoplasma gondii. J Immunol 141(10):3584–3591

    CAS  PubMed  Google Scholar 

  20. Nagel SD, Boothroyd JC (1988) The alpha- and beta-tubulins of Toxoplasma gondii are encoded by single copy genes containing multiple introns. Mol Biochem Parasitol 29(2–3):261–273

    Article  CAS  PubMed  Google Scholar 

  21. Johnson AM, Murray PJ, Illana S, Baverstock PJ (1987) Rapid nucleotide sequence analysis of the small subunit ribosomal RNA of Toxoplasma gondii: evolutionary implications for the Apicomplexa. Mol Biochem Parasitol 25(3):239–246

    Article  CAS  PubMed  Google Scholar 

  22. Sibley LD, Weidner E, Krahenbuhl JL (1985) Phagosome acidification blocked by intracellular Toxoplasma gondii. Nature 315(6018):416–419

    Article  CAS  PubMed  Google Scholar 

  23. Jeannel D, Niel G, Costagliola D, Danis M, Traore BM, Gentilini M (1988) Epidemiology of toxoplasmosis among pregnant women in the Paris area. Int J Epidemiol 17(3):595–602

    Article  CAS  PubMed  Google Scholar 

  24. Danziger A, Leibman AJ (1983) Cerebral toxoplasmosis in a patient with acquired immunodeficiency syndrome. Surg Neurol 20(4):332–334. PubMed PMID: 6623346

    Article  CAS  PubMed  Google Scholar 

  25. Dozier N, Ballentine R, Adams SC, Okafor KC (1983) Acquired immune deficiency syndrome and the management of associated opportunistic infections. Drug Intell Clin Pharm 17(11):798–807

    Article  CAS  PubMed  Google Scholar 

  26. Handler M, Ho V, Whelan M, Budzilovich G (1983) Intracerebral toxoplasmosis in patients with acquired immune deficiency syndrome. J Neurosurg 59(6):994–1001. PubMed PMID: 6631520

    Article  CAS  PubMed  Google Scholar 

  27. Horowitz SL, Bentson JR, Benson F, Davos I, Pressman B, Gottlieb MS (1983) CNS toxoplasmosis in acquired immunodeficiency syndrome. Arch Neurol 40(10):649–652

    Article  CAS  PubMed  Google Scholar 

  28. Moskowitz LB, Kory P, Chan JC, Haverkos HW, Conley FK, Hensley GT (1983) Unusual causes of death in Haitians residing in Miami. High prevalence of opportunistic infections. JAMA 250(9):1187–1191

    Article  CAS  PubMed  Google Scholar 

  29. Soete M, Fortier B, Camus D, Dubremetz JF (1993) Toxoplasma gondii: kinetics of bradyzoite-tachyzoite interconversion in vitro. Exp Parasitol 76(3):259–264

    Article  CAS  PubMed  Google Scholar 

  30. Singh U, Brewer JL, Boothroyd JC (2002) Genetic analysis of tachyzoite to bradyzoite differentiation mutants in Toxoplasma gondii reveals a hierarchy of gene induction. Mol Microbiol 44(3):721–733. PubMed PMID: 11994153

    Article  CAS  PubMed  Google Scholar 

  31. Matrajt M, Donald RG, Singh U, Roos DS (2002) Identification and characterization of differentiation mutants in the protozoan parasite Toxoplasma gondii. Mol Microbiol 44(3):735–747. PubMed PMID: 11994154

    Article  CAS  PubMed  Google Scholar 

  32. Anderson MZ, Brewer J, Singh U, Boothroyd JC (2009) A pseudouridine synthase homologue is critical to cellular differentiation in Toxoplasma gondii. Eukaryot Cell 8(3):398–409. https://doi.org/10.1128/EC.00329-08. PubMed PMID: 19124578; PubMed Central PMCID: PMC2653242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Craver MP, Rooney PJ, Knoll LJ (2010) Isolation of Toxoplasma gondii development mutants identifies a potential proteophosphogylcan that enhances cyst wall formation. Mol Biochem Parasitol 169(2):120–123. https://doi.org/10.1016/j.molbiopara.2009.10.006. PubMed PMID: 19879901; PubMed Central PMCID: PMC2791180

    Article  CAS  PubMed  Google Scholar 

  34. Patil V, Lescault PJ, Lirussi D, Thompson AB, Matrajt M (2012) Disruption of the expression of a non-coding RNA significantly impairs cellular differentiation in Toxoplasma gondii. Int J Mol Sci 14(1):611–624. https://doi.org/10.3390/ijms14010611. PubMed PMID: 23275028; PubMed Central PMCID: PMC3565285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kasper LH, Crabb JH, Pfefferkorn ER (1982) Isolation and characterization of a monoclonal antibody-resistant antigenic mutant of Toxoplasma gondii. J Immunol 129(4):1694–1699

    CAS  PubMed  Google Scholar 

  36. Kasper LH, Pfefferkorn ER (1982) Hydroxyurea inhibition of growth and DNA synthesis in Toxoplasma gondii: characterization of a resistant mutant. Mol Biochem Parasitol 6(3):141–150

    Article  CAS  PubMed  Google Scholar 

  37. Kim K, Soldati D, Boothroyd JC (1993) Gene replacement in Toxoplasma gondii with chloramphenicol acetyltransferase as selectable marker. Science 262(5135):911–914

    Article  CAS  PubMed  Google Scholar 

  38. Soldati D, Boothroyd JC (1993) Transient transfection and expression in the obligate intracellular parasite Toxoplasma gondii. Science 260(5106):349–352

    Article  CAS  PubMed  Google Scholar 

  39. Donald RG, Roos DS (1993) Stable molecular transformation of Toxoplasma gondii: a selectable dihydrofolate reductase-thymidylate synthase marker based on drug- resistance mutations in malaria. Proc Natl Acad Sci U S A 90(24):11703–11707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Roos DS, Donald RG, Morrissette NS, Moulton AL (1994) Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol 45:27–63

    Article  CAS  PubMed  Google Scholar 

  41. Striepen B, He CY, Matrajt M, Soldati D, Roos DS (1998) Expression, selection, and organellar targeting of the green fluorescent protein in Toxoplasma gondii. Mol Biochem Parasitol 92(2):325–338

    Article  CAS  PubMed  Google Scholar 

  42. Striepen B, White MW, Li C, Guerini MN, Malik SB, Logsdon JM Jr et al (2002) Genetic complementation in apicomplexan parasites. Proc Natl Acad Sci U S A 99(9):6304–6309. PubMed PMID: 11959921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Farrell A, Thirugnanam S, Lorestani A, Dvorin JD, Eidell KP, Ferguson DJ et al (2012) A DOC2 protein identified by mutational profiling is essential for apicomplexan parasite exocytosis. Science 335(6065):218–221. https://doi.org/10.1126/science.1210829. PubMed PMID: 22246776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Garrison E, Treeck M, Ehret E, Butz H, Garbuz T, Oswald BP et al (2012) A forward genetic screen reveals that calcium-dependent protein kinase 3 regulates egress in Toxoplasma. PLoS Pathog 8(11):e1003049. https://doi.org/10.1371/journal.ppat.1003049. PubMed PMID: 23209419; PubMed Central PMCID: PMC3510250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Meissner M, Brecht S, Bujard H, Soldati D (2001) Modulation of myosin a expression by a newly established tetracycline repressor-based inducible system in Toxoplasma gondii. Nucleic Acids Res 29(22):E115. PubMed PMID: 11713335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Andenmatten N, Egarter S, Jackson AJ, Jullien N, Herman JP, Meissner M (2013) Conditional genome engineering in Toxoplasma gondii uncovers alternative invasion mechanisms. Nat Methods 10(2):125–127. https://doi.org/10.1038/nmeth.2301. PubMed PMID: 23263690; PubMed Central PMCID: PMC3605914

    Article  CAS  PubMed  Google Scholar 

  47. Herm-Gotz A, Agop-Nersesian C, Munter S, Grimley JS, Wandless TJ, Frischknecht F et al (2007) Rapid control of protein level in the apicomplexan Toxoplasma gondii. Nat Methods 4(12):1003–1005. https://doi.org/10.1038/nmeth1134. PubMed PMID: 17994029; PubMed Central PMCID: PMC2601725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brown KM, Long S, Sibley LD (2018) Conditional knockdown of proteins using Auxin-inducible Degron (AID) fusions in Toxoplasma gondii. Bio Protoc 8(4). https://doi.org/10.21769/BioProtoc.2728. PubMed PMID: 29644255; PubMed Central PMCID: PMCPMC5890294

  49. Pfefferkorn ER, Pfefferkorn LC (1976) Toxoplasma gondii: isolation and preliminary characterization of temperature-sensitive mutants. Exp Parasitol 39(3):365–376

    Article  CAS  PubMed  Google Scholar 

  50. Coleman BI, Gubbels MJ (2012) A genetic screen to isolate Toxoplasma gondii host-cell egress mutants. J Vis Exp 60. https://doi.org/10.3791/3807. PubMed PMID: 22349295

  51. Chen CT, Gubbels MJ (2013) The Toxoplasma gondii centrosome is the platform for internal daughter budding as revealed by a Nek1 kinase mutant. J Cell Sci 126(Pt 15):3344–3355. https://doi.org/10.1242/jcs.123364. PubMed PMID: 23729737; PubMed Central PMCID: PMC3730244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Suvorova ES, Croken M, Kratzer S, Ting LM, de Felipe MC, Balu B et al (2013) Discovery of a splicing regulator required for cell cycle progression. PLoS Genet 9(2):e1003305. https://doi.org/10.1371/journal.pgen.1003305. Epub 2013/02/26. PGENETICS-D-12-01651 [pii]. PubMed PMID: 23437009; PubMed Central PMCID: PMC3578776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Suvorova ES, Francia M, Striepen B, White MW (2015) A novel bipartite centrosome coordinates the apicomplexan cell cycle. PLoS Biol 13(3):e1002093. https://doi.org/10.1371/journal.pbio.1002093. PubMed PMID: 25734885; PubMed Central PMCID: PMCPMC4348508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Naumov A, Kratzer S, Ting LM, Kim K, Suvorova ES, White MW (2017) The Toxoplasma Centrocone houses cell cycle regulatory factors. MBio 8(4). https://doi.org/10.1128/mBio.00579-17. PubMed PMID: 28830940; PubMed Central PMCID: PMCPMC5565962

  55. Knoll LJ, Furie GL, Boothroyd JC (2001) Adaptation of signature-tagged mutagenesis for Toxoplasma gondii: a negative screening strategy to isolate genes that are essential in restrictive growth conditions. Mol Biochem Parasitol 116(1):11–16. PubMed PMID: 11463461

    Article  CAS  PubMed  Google Scholar 

  56. Shen B, Brown KM, Lee TD, Sibley LD (2014) Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9. MBio 5(3):e01114–e01114. https://doi.org/10.1128/mBio.01114-14. PubMed PMID: 24825012; PubMed Central PMCID: PMC4030483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sidik SM, Hackett CG, Tran F, Westwood NJ, Lourido S (2014) Efficient genome engineering of Toxoplasma gondii using CRISPR/Cas9. PLoS One 9(6):e100450. https://doi.org/10.1371/journal.pone.0100450. PubMed PMID: 24971596; PubMed Central PMCID: PMC4074098

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sidik SM, Hortua Triana MA, Paul AS, El Bakkouri M, Hackett CG, Tran F et al (2016) Using a genetically encoded sensor to identify inhibitors of Toxoplasma gondii Ca2+ signalling. J Biol Chem. https://doi.org/10.1074/jbc.M115.703546. PubMed PMID: 26933036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Windeck T, Gross U (1996) Toxoplasma gondii strain-specific transcript levels of SAG1 and their association with virulence. Parasitol Res 82(8):715–719

    Article  CAS  PubMed  Google Scholar 

  60. de Roever-Bonnet H (1969) Congenital Toxoplasma infections in mice and hamsters infected with avirulent and virulant strains. Trop Geogr Med 21(4):443–450

    PubMed  Google Scholar 

  61. Suzuki Y, Yang Q, Remington JS (1995) Genetic resistance against acute toxoplasmosis depends on the strain of Toxoplasma gondii. J Parasitol 81(6):1032–1034

    Article  CAS  PubMed  Google Scholar 

  62. Pernas L, Adomako-Ankomah Y, Shastri AJ, Ewald SE, Treeck M, Boyle JP et al (2014) Toxoplasma effector MAF1 mediates recruitment of host mitochondria and impacts the host response. PLoS Biol 12(4):e1001845. https://doi.org/10.1371/journal.pbio.1001845. PubMed PMID: 24781109; PubMed Central PMCID: PMC4004538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sibley LD, LeBlanc AJ, Pfefferkorn ER, Boothroyd JC (1992) Generation of a restriction fragment length polymorphism linkage map for Toxoplasma gondii. Genetics 132(4):1003–1015

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sibley LD, Boothroyd JC (1992) Virulent strains of Toxoplasma gondii comprise a single clonal lineage. Nature 359(6390):82–85

    Article  CAS  PubMed  Google Scholar 

  65. Darde ML, Bouteille B, Pestre-Alexandre M (1992) Isoenzyme analysis of 35 Toxoplasma gondii isolates and the biological and epidemiological implications. J Parasitol 78(5):786–794

    Article  CAS  PubMed  Google Scholar 

  66. Howe DK, Sibley LD (1995) Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease. J Infect Dis 172(6):1561–1566

    Article  CAS  PubMed  Google Scholar 

  67. Fichera ME, Roos DS (1997) A plastid organelle as a drug target in apicomplexan parasites. Nature 390(6658):407–409

    Article  CAS  PubMed  Google Scholar 

  68. McFadden GI, Reith ME, Munholland J, Lang-Unnasch N (1996) Plastid in human parasites [letter]. Nature 381(6582):482

    Article  CAS  PubMed  Google Scholar 

  69. Ajioka JW, Boothroyd JC, Brunk BP, Hehl A, Hillier L, Manger ID et al (1998) Gene discovery by EST sequencing in Toxoplasma gondii reveals sequences restricted to the Apicomplexa. Genome Res 8(1):18–28

    Article  CAS  PubMed  Google Scholar 

  70. Manger ID, Hehl AB, Boothroyd JC (1998) The surface of Toxoplasma tachyzoites is dominated by a family of glycosylphosphatidylinositol-anchored antigens related to SAG1. Infect Immun 66(5):2237–2244

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Herion P, Hernandez-Pando R, Dubremetz JF, Saavedra R (1993) Subcellular localization of the 54-kDa antigen of Toxoplasma gondii. J Parasitol 79(2):216–222

    Article  CAS  PubMed  Google Scholar 

  72. El Hajj H, Demey E, Poncet J, Lebrun M, Wu B, Galeotti N et al (2006) The ROP2 family of Toxoplasma gondii rhoptry proteins: proteomic and genomic characterization and molecular modeling. Proteomics 6(21):5773–5784. PubMed PMID: 17022100

    Article  PubMed  CAS  Google Scholar 

  73. Lorenzi H, Khan A, Behnke MS, Namasivayam S, Swapna LS, Hadjithomas M et al (2016) Local admixture of amplified and diversified secreted pathogenesis determinants shapes mosaic Toxoplasma gondii genomes. Nat Commun 7:10147. https://doi.org/10.1038/ncomms10147. PubMed PMID: 26738725; PubMed Central PMCID: PMCPMC4729833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kissinger JC, Gajria B, Li L, Paulsen IT, Roos DS (2003) ToxoDB: accessing the Toxoplasma gondii genome. Nucleic Acids Res 31(1):234–236. PubMed PMID: 12519989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cleary MD, Singh U, Blader IJ, Brewer JL, Boothroyd JC (2002) Toxoplasma gondii asexual development: identification of developmentally regulated genes and distinct patterns of gene expression. Eukaryot Cell 1(3):329–340. PubMed PMID: 12455982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Su C, Hott C, Brownstein BH, Sibley LD (2004) Typing single-nucleotide polymorphisms in Toxoplasma gondii by allele-specific primer extension and microarray detection. Methods Mol Biol 270:249–262. PubMed PMID: 15153632

    CAS  PubMed  Google Scholar 

  77. Bahl A, Davis PH, Behnke M, Dzierszinski F, Jagalur M, Chen F et al (2010) A novel multifunctional oligonucleotide microarray for Toxoplasma gondii. BMC Genomics 11:603. https://doi.org/10.1186/1471-2164-11-603. Epub 2010/10/27. doi: 1471-2164-11-603 [pii]. PubMed PMID: 20974003; PubMed Central PMCID: PMC3017859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Buchholz KR, Fritz HM, Chen X, Durbin-Johnson B, Rocke DM, Ferguson DJ et al (2011) Identification of tissue cyst wall components by transcriptome analysis of in vivo and in vitro Toxoplasma gondii bradyzoites. Eukaryot Cell 10(12):1637–1647. https://doi.org/10.1128/EC.05182-11. Epub 2011/10/25. doi: EC.05182-11 [pii]. PubMed PMID: 22021236; PubMed Central PMCID: PMC3232729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Blader IJ, Manger ID, Boothroyd JC (2001) Microarray analysis reveals previously unknown changes in Toxoplasma gondii-infected human cells. J Biol Chem 276(26):24223–24231. PubMed PMID: 11294868

    Article  CAS  PubMed  Google Scholar 

  80. Chaussabel D, Semnani RT, McDowell MA, Sacks D, Sher A, Nutman TB (2003) Unique gene expression profiles of human macrophages and dendritic cells to phylogenetically distinct parasites. Blood 102(2):672–681. PubMed PMID: 12663451

    Article  CAS  PubMed  Google Scholar 

  81. Knight BC, Kissane S, Falciani F, Salmon M, Stanford MR, Wallace GR (2006) Expression analysis of immune response genes of Muller cells infected with Toxoplasma gondii. J Neuroimmunol 179(1–2):126–131. PubMed PMID: 16934877

    Article  CAS  PubMed  Google Scholar 

  82. Tuda J, Mongan AE, Tolba ME, Imada M, Yamagishi J, Xuan X et al (2011) Full-parasites: database of full-length cDNAs of apicomplexa parasites, 2010 update. Nucleic Acids Res 39(Database issue):D625–D631. https://doi.org/10.1093/nar/gkq1111. Epub 2010/11/06. doi: gkq1111. PubMed PMID: 21051343; PubMed Central PMCID: PMC3013703

    Article  CAS  PubMed  Google Scholar 

  83. Hassan MA, Melo MB, Haas B, Jensen KD, Saeij JP (2012) De novo reconstruction of the Toxoplasma gondii transcriptome improves on the current genome annotation and reveals alternatively spliced transcripts and putative long non-coding RNAs. BMC Genomics 13:696. https://doi.org/10.1186/1471-2164-13-696. Epub 2012/12/13. doi: 1471-2164-13-696. PubMed PMID: 23231500; PubMed Central PMCID: PMC3543268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tanaka S, Nishimura M, Ihara F, Yamagishi J, Suzuki Y, Nishikawa Y (2013) Transcriptome analysis of mouse brain infected with Toxoplasma gondii. Infect Immun.. Epub 2013/07/17. https://doi.org/10.1128/IAI.00439-13. PubMed PMID: 23856619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pittman KJ, Aliota MT, Knoll LJ (2014) Dual transcriptional profiling of mice and Toxoplasma gondii during acute and chronic infection. BMC Genomics 15:806. https://doi.org/10.1186/1471-2164-15-806. PubMed PMID: 25240600; PubMed Central PMCID: PMC4177681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Swierzy IJ, Handel U, Kaever A, Jarek M, Scharfe M, Schluter D et al (2017) Divergent co-transcriptomes of different host cells infected with Toxoplasma gondii reveal cell type-specific host-parasite interactions. Sci Rep 7(1):7229. https://doi.org/10.1038/s41598-017-07838-w. PubMed PMID: 28775382; PubMed Central PMCID: PMCPMC5543063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gissot M, Kelly KA, Ajioka JW, Greally JM, Kim K (2007) Epigenomic modifications predict active promoters and gene structure in Toxoplasma gondii. PLoS Pathog 3(6):e77. https://doi.org/10.1371/journal.ppat.0030077. Epub 2007/06/15. doi: 07-PLPA-RA-0114. PubMed PMID: 17559302; PubMed Central PMCID: PMC1891328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sautel CF, Cannella D, Bastien O, Kieffer S, Aldebert D, Garin J et al (2007) SET8-mediated methylations of histone H4 lysine 20 mark silent heterochromatic domains in apicomplexan genomes. Mol Cell Biol 27(16):5711–5724. https://doi.org/10.1128/MCB.00482-07. Epub 2007/06/15. doi: MCB.00482-07. PubMed PMID: 17562855; PubMed Central PMCID: PMC1952134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bougdour A, Sautel CF, Cannella D, Braun L, Hakimi MA (2008) Toxoplasma gondii gene expression is under the control of regulatory pathways acting through chromatin structure. Parasite 15(3):206–210. Epub 2008/09/26 PubMed PMID: 18814682

    Article  CAS  PubMed  Google Scholar 

  90. Dlugonska H, Dytnerska K, Reichmann G, Stachelhaus S, Fischer HG (2001) Towards the Toxoplasma gondii proteome: position of 13 parasite excretory antigens on a standardized map of two-dimensionally separated tachyzoite proteins. Parasitol Res 87(8):634–637. PubMed PMID: 11511000

    Article  CAS  PubMed  Google Scholar 

  91. Nischik N, Schade B, Dytnerska K, Dlugonska H, Reichmann G, Fischer HG (2001) Attenuation of mouse-virulent Toxoplasma gondii parasites is associated with a decrease in interleukin-12-inducing tachyzoite activity and reduced expression of actin, catalase and excretory proteins. Microbes Infect 3(9):689–699. PubMed PMID: 11489417

    Article  CAS  PubMed  Google Scholar 

  92. Cohen AM, Rumpel K, Coombs GH, Wastling JM (2002) Characterisation of global protein expression by two-dimensional electrophoresis and mass spectrometry: proteomics of Toxoplasma gondii. Int J Parasitol 32(1):39–51. PubMed PMID: 11796121

    Article  CAS  PubMed  Google Scholar 

  93. Zhou XW, Kafsack BF, Cole RN, Beckett P, Shen RF, Carruthers VB (2005) The opportunistic pathogen Toxoplasma gondii deploys a diverse legion of invasion and survival proteins. J Biol Chem 280(40):34233–34244. PubMed PMID: 16002397

    Article  CAS  PubMed  Google Scholar 

  94. Bradley PJ, Ward C, Cheng SJ, Alexander DL, Coller S, Coombs GH et al (2005) Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii. J Biol Chem 280(40):34245–34258. PubMed PMID: 16002398

    Article  CAS  PubMed  Google Scholar 

  95. Lebrun M, Michelin A, El Hajj H, Poncet J, Bradley PJ, Vial H et al (2005) The rhoptry neck protein RON4 re-localizes at the moving junction during Toxoplasma gondii invasion. Cell Microbiol 7(12):1823–1833. PubMed PMID: 16309467

    Article  CAS  PubMed  Google Scholar 

  96. Alexander DL, Arastu-Kapur S, Dubremetz JF, Boothroyd JC (2006) Plasmodium falciparum AMA1 binds a rhoptry neck protein homologous to TgRON4, a component of the moving junction in Toxoplasma gondii. Eukaryot Cell 5(7):1169–1173. PubMed PMID: 16835460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fauquenoy S, Morelle W, Hovasse A, Bednarczyk A, Slomianny C, Schaeffer C et al (2008) Proteomics and glycomics analyses of N-glycosylated structures involved in Toxoplasma gondii--host cell interactions. Mol Cell Proteomics 7(5):891–910. https://doi.org/10.1074/mcp.M700391-MCP200. Epub 2008/01/12. PubMed PMID: 18187410

    Article  CAS  PubMed  Google Scholar 

  98. Welti R, Mui E, Sparks A, Wernimont S, Isaac G, Kirisits M et al (2007) Lipidomic analysis of Toxoplasma gondii reveals unusual polar lipids. Biochemistry 46(48):13882–13890. https://doi.org/10.1021/bi7011993. Epub 2007/11/09. PubMed PMID: 17988103; PubMed Central PMCID: PMC2576749

    Article  CAS  PubMed  Google Scholar 

  99. Besteiro S, Bertrand-Michel J, Lebrun M, Vial H, Dubremetz JF (2008) Lipidomic analysis of Toxoplasma gondii tachyzoites rhoptries: further insights into the role of cholesterol. Biochem J 415(1):87–96. https://doi.org/10.1042/BJ20080795. Epub 2008/06/20. PubMed PMID: 18564055

    Article  CAS  PubMed  Google Scholar 

  100. Ramakrishnan S, Docampo MD, Macrae JI, Pujol FM, Brooks CF, van Dooren GG et al (2012) Apicoplast and endoplasmic reticulum cooperate in fatty acid biosynthesis in apicomplexan parasite Toxoplasma gondii. J Biol Chem 287(7):4957–4971. https://doi.org/10.1074/jbc.M111.310144. Epub 2011/12/20. PubMed PMID: 22179608; PubMed Central PMCID: PMC3281623

    Article  CAS  PubMed  Google Scholar 

  101. Treeck M, Sanders JL, Elias JE, Boothroyd JC (2011) The Phosphoproteomes of plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the Parasites' boundaries. Cell Host Microbe 10(4):410–419. https://doi.org/10.1016/j.chom.2011.09.004. Epub 2011/10/25. doi: S1931-3128(11)00288-5 [pii]. PubMed PMID: 22018241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Treeck M, Sanders JL, Gaji RY, LaFavers KA, Child MA, Arrizabalaga G et al (2014) The calcium-dependent protein kinase 3 of Toxoplasma influences basal calcium levels and functions beyond egress as revealed by quantitative phosphoproteome analysis. PLoS Pathog 10(6):e1004197. https://doi.org/10.1371/journal.ppat.1004197. PubMed PMID: 24945436; PubMed Central PMCID: PMC4063958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Al-Bajalan MMM, Xia D, Armstrong S, Randle N, Wastling JM (2017) Toxoplasma gondii and Neospora caninum induce different host cell responses at proteome-wide phosphorylation events; a step forward for uncovering the biological differences between these closely related parasites. Parasitol Res 116(10):2707–2719. https://doi.org/10.1007/s00436-017-5579-7. PubMed PMID: 28803361

    Article  PubMed  Google Scholar 

  104. He C, Chen AY, Wei HX, Feng XS, Peng HJ (2017) Phosphoproteome of Toxoplasma gondii infected host cells reveals specific cellular processes predominating in different phases of infection. Am J Trop Med Hyg 97(1):236–244. https://doi.org/10.4269/ajtmh.16-0901. PubMed PMID: 28719319; PubMed Central PMCID: PMCPMC5508905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Carey KL, Westwood NJ, Mitchison TJ, Ward GE (2004) A small-molecule approach to studying invasive mechanisms of Toxoplasma gondii. Proc Natl Acad Sci U S A 101(19):7433–7438. PubMed PMID: 15123807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Heaslip AT, Leung JM, Carey KL, Catti F, Warshaw DM, Westwood NJ et al (2010) A small-molecule inhibitor of T. gondii motility induces the posttranslational modification of myosin light chain-1 and inhibits myosin motor activity. PLoS Pathog 6(1):e1000720. https://doi.org/10.1371/journal.ppat.1000720. Epub 2010/01/20. PubMed PMID: 20084115; PubMed Central PMCID: PMC2800044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Leung JM, Tran F, Pathak RB, Poupart S, Heaslip AT, Ballif BA et al (2014) Identification of T. gondii myosin light chain-1 as a direct target of TachypleginA-2, a small-molecule inhibitor of parasite motility and invasion. PLoS One 9(6):e98056. https://doi.org/10.1371/journal.pone.0098056. PubMed PMID: 24892871; PubMed Central PMCID: PMC4043638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hall CI, Reese ML, Weerapana E, Child MA, Bowyer PW, Albrow VE et al (2011) Chemical genetic screen identifies Toxoplasma DJ-1 as a regulator of parasite secretion, attachment, and invasion. Proc Natl Acad Sci U S A 108(26):10568–10573. https://doi.org/10.1073/pnas.1105622108. Epub 2011/06/15. PubMed PMID: 21670272; PubMed Central PMCID: PMC3127939

    Article  PubMed  PubMed Central  Google Scholar 

  109. Carruthers VG, Sibley LD (1997) Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. Eur J Cell Biol 73:114–123

    CAS  PubMed  Google Scholar 

  110. Alexander DL, Mital J, Ward GE, Bradley P, Boothroyd JC (2005) Identification of the moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory organelles. PLoS Pathog 1(2):e17. PubMed PMID: 16244709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Tonkin ML, Roques M, Lamarque MH, Pugniere M, Douguet D, Crawford J et al (2011) Host cell invasion by apicomplexan parasites: insights from the co-structure of AMA1 with a RON2 peptide. Science 333(6041):463–467. https://doi.org/10.1126/science.1204988. Epub 2011/07/23. doi: 333/6041/463. PubMed PMID: 21778402

    Article  CAS  PubMed  Google Scholar 

  112. Sinai AP, Joiner KA (2001) The Toxoplasma gondii protein ROP2 mediates host organelle association with the parasitophorous vacuole membrane. J Cell Biol 154(1):95–108. PubMed PMID: 11448993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gilbert LA, Ravindran S, Turetzky JM, Boothroyd JC, Bradley PJ (2007) Toxoplasma gondii targets a protein phosphatase 2C to the nuclei of infected host cells. Eukaryot Cell 6(1):73–83. PubMed PMID: 17085638

    Article  CAS  PubMed  Google Scholar 

  114. Saeij JP, Boyle JP, Coller S, Taylor S, Sibley LD, Brooke-Powell ET et al (2006) Polymorphic secreted kinases are key virulence factors in toxoplasmosis. Science 314(5806):1780–1783. https://doi.org/10.1126/science.1133690. Epub 2006/12/16. doi: 314/5806/1780. PubMed PMID: 17170306; PubMed Central PMCID: PMC2646183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Taylor S, Barragan A, Su C, Fux B, Fentress SJ, Tang K et al (2006) A secreted serine-threonine kinase determines virulence in the eukaryotic pathogen Toxoplasma gondii. Science 314(5806):1776–1780. PubMed PMID: 17170305

    Article  CAS  PubMed  Google Scholar 

  116. Saeij JP, Coller S, Boyle JP, Jerome ME, White MW, Boothroyd JC (2007) Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue. Nature 445(7125):324–327. PubMed PMID: 17183270

    Article  CAS  PubMed  Google Scholar 

  117. Khaminets A, Hunn JP, Konen-Waisman S, Zhao YO, Preukschat D, Coers J et al (2010) Coordinated loading of IRG resistance GTPases on to the Toxoplasma gondii parasitophorous vacuole. Cell Microbiol 12(7):939–961. https://doi.org/10.1111/j.1462-5822.2010.01443.x. Epub 2010/01/30. PubMed PMID: 20109161; PubMed Central PMCID: PMC2901525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Reese ML, Zeiner GM, Saeij JP, Boothroyd JC, Boyle JP (2011) Polymorphic family of injected pseudokinases is paramount in Toxoplasma virulence. Proc Natl Acad Sci U S A 108(23):9625–9630. https://doi.org/10.1073/pnas.1015980108. Epub 2011/03/26. PubMed PMID: 21436047; PubMed Central PMCID: PMC3111280

    Article  PubMed  PubMed Central  Google Scholar 

  119. Behnke MS, Fentress SJ, Mashayekhi M, Li LX, Taylor GA, Sibley LD (2012) The polymorphic pseudokinase ROP5 controls virulence in Toxoplasma gondii by regulating the active kinase ROP18. PLoS Pathog 8(11):e1002992. https://doi.org/10.1371/journal.ppat.1002992. Epub 2012/11/13. PPATHOGENS-D-12-01380 [pii]. PubMed PMID: 23144612; PubMed Central PMCID: PMC3493473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Niedelman W, Gold DA, Rosowski EE, Sprokholt JK, Lim D, Farid Arenas A et al (2012) The rhoptry proteins ROP18 and ROP5 mediate Toxoplasma gondii evasion of the murine, but not the human, interferon-gamma response. PLoS Pathog 8(6):e1002784. https://doi.org/10.1371/journal.ppat.1002784. Epub 2012/07/05. PPATHOGENS-D-11-02761 [pii]. PubMed PMID: 22761577; PubMed Central PMCID: PMC3386190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gazzinelli RT, Mendonca-Neto R, Lilue J, Howard J, Sher A (2014) Innate resistance against Toxoplasma gondii: an evolutionary tale of mice, cats, and men. Cell Host Microbe 15(2):132–138. https://doi.org/10.1016/j.chom.2014.01.004. PubMed PMID: 24528860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lodoen MB, Gerke C, Boothroyd JC (2010) A highly sensitive FRET-based approach reveals secretion of the actin-binding protein toxofilin during Toxoplasma gondii infection. Cell Microbiol 12(1):55–66. https://doi.org/10.1111/j.1462-5822.2009.01378.x. Epub 2009/09/08. PubMed PMID: 19732057

    Article  CAS  PubMed  Google Scholar 

  123. Koshy AA, Fouts AE, Lodoen MB, Alkan O, Blau HM, Boothroyd JC (2010) Toxoplasma secreting Cre recombinase for analysis of host-parasite interactions. Nat Methods 7(4):307–309. https://doi.org/10.1038/nmeth.1438. Epub 2010/03/09. PubMed PMID: 20208532; PubMed Central PMCID: PMC2850821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Koshy AA, Dietrich HK, Christian DA, Melehani JH, Shastri AJ, Hunter CA et al (2012) Toxoplasma co-opts host cells it does not invade. PLoS Pathog 8(7):e1002825. https://doi.org/10.1371/journal.ppat.1002825. Epub 2012/08/23. PPATHOGENS-D-11-02798. PubMed PMID: 22910631; PubMed Central PMCID: PMC3406079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Christian DA, Koshy AA, Reuter MA, Betts MR, Boothroyd JC, Hunter CA (2014) Use of transgenic parasites and host reporters to dissect events that promote interleukin-12 production during toxoplasmosis. Infect Immun 82(10):4056–4067. https://doi.org/10.1128/IAI.01643-14. PubMed PMID: 25024368; PubMed Central PMCID: PMC4187868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bougdour A, Durandau E, Brenier-Pinchart MP, Ortet P, Barakat M, Kieffer S et al (2013) Host cell subversion by Toxoplasma GRA16, an exported dense granule protein that targets the host cell nucleus and alters gene expression. Cell Host Microbe 13(4):489–500. https://doi.org/10.1016/j.chom.2013.03.002. Epub 2013/04/23. doi: S1931-3128(13)00112-1. PubMed PMID: 23601110

    Article  CAS  PubMed  Google Scholar 

  127. Braun L, Brenier-Pinchart MP, Yogavel M, Curt-Varesano A, Curt-Bertini RL, Hussain T et al (2013) A Toxoplasma dense granule protein, GRA24, modulates the early immune response to infection by promoting a direct and sustained host p38 MAPK activation. J Exp Med 210(10):2071–2086. https://doi.org/10.1084/jem.20130103. PubMed PMID: 24043761; PubMed Central PMCID: PMCPMC3782045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bougdour A, Tardieux I, Hakimi MA (2014) Toxoplasma exports dense granule proteins beyond the vacuole to the host cell nucleus and rewires the host genome expression. Cell Microbiol 16(3):334–343. https://doi.org/10.1111/cmi.12255. PubMed PMID: 24373221

    Article  CAS  PubMed  Google Scholar 

  129. Coffey MJ, Sleebs BE, Uboldi AD, Garnham A, Franco M, Marino ND et al (2015) An aspartyl protease defines a novel pathway for export of Toxoplasma proteins into the host cell. Elife 4. https://doi.org/10.7554/eLife.10809. PubMed PMID: 26576949; PubMed Central PMCID: PMCPMC4764566

  130. Hammoudi PM, Jacot D, Mueller C, Di Cristina M, Dogga SK, Marq JB et al (2015) Fundamental Roles of the Golgi-associated Toxoplasma aspartyl protease, ASP5, at the Host-Parasite Interface. PLoS Pathog 11(10):e1005211. https://doi.org/10.1371/journal.ppat.1005211. PubMed PMID: 26473595; PubMed Central PMCID: PMCPMC4608785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Curt-Varesano A, Braun L, Ranquet C, Hakimi MA, Bougdour A (2016) The aspartyl protease TgASP5 mediates the export of the Toxoplasma GRA16 and GRA24 effectors into host cells. Cell Microbiol 18(2):151–167. https://doi.org/10.1111/cmi.12498. PubMed PMID: 26270241

    Article  CAS  PubMed  Google Scholar 

  132. Franco M, Panas MW, Marino ND, Lee MC, Buchholz KR, Kelly FD et al (2016) A novel secreted protein, MYR1, is central to Toxoplasma’s manipulation of host cells. MBio 7(1). https://doi.org/10.1128/mBio.02231-15. PubMed PMID: 26838724; PubMed Central PMCID: PMCPMC4742717

  133. Marino ND, Panas MW, Franco M, Theisen TC, Naor A, Rastogi S et al (2018) Identification of a novel protein complex essential for effector translocation across the parasitophorous vacuole membrane of Toxoplasma gondii. PLoS Pathog 14(1):e1006828. https://doi.org/10.1371/journal.ppat.1006828. PubMed PMID: 29357375; PubMed Central PMCID: PMCPMC5794187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gay G, Braun L, Brenier-Pinchart MP, Vollaire J, Josserand V, Bertini RL et al (2016) Toxoplasma gondii TgIST co-opts host chromatin repressors dampening STAT1-dependent gene regulation and IFN-gamma-mediated host defenses. J Exp Med 213(9):1779–1798. https://doi.org/10.1084/jem.20160340. PubMed PMID: 27503074; PubMed Central PMCID: PMCPMC4995087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Olias P, Etheridge RD, Zhang Y, Holtzman MJ, Sibley LD (2016) Toxoplasma effector recruits the Mi-2/NuRD complex to repress STAT1 transcription and block IFN-gamma-dependent gene expression. Cell Host Microbe 20(1):72–82. https://doi.org/10.1016/j.chom.2016.06.006. PubMed PMID: 27414498; PubMed Central PMCID: PMCPMC4947229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Naor A, Panas MW, Marino N, Coffey MJ, Tonkin CJ, Boothroyd JC (2018) MYR1-dependent effectors are the major drivers of a host cell's early response to Toxoplasma, including counteracting MYR1-independent effects. MBio 9(2). https://doi.org/10.1128/mBio.02401-17. PubMed PMID: 29615509; PubMed Central PMCID: PMCPMC5885026

  137. Opitz C, Soldati D (2002) ‘The glideosome’: a dynamic complex powering gliding motion and host cell invasion by Toxoplasma gondii. Mol Microbiol 45(3):597–604. PubMed PMID: 12139608

    Article  CAS  PubMed  Google Scholar 

  138. Gaskins E, Gilk S, DeVore N, Mann T, Ward G, Beckers C (2004) Identification of the membrane receptor of a class XIV myosin in Toxoplasma gondii. J Cell Biol 165(3):383–393. PubMed PMID: 15123738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gilk SD, Gaskins E, Ward GE, Beckers CJ (2009) GAP45 phosphorylation controls assembly of the Toxoplasma myosin XIV complex. Eukaryot Cell 8(2):190–196. https://doi.org/10.1128/EC.00201-08. Epub 2008/12/03. PubMed PMID: 19047362; PubMed Central PMCID: PMC2643604

    Article  CAS  PubMed  Google Scholar 

  140. Bullen HE, Tonkin CJ, O'Donnell RA, Tham WH, Papenfuss AT, Gould S et al (2009) A novel family of Apicomplexan glideosome-associated proteins with an inner membrane-anchoring role. J Biol Chem 284(37):25353–25363. https://doi.org/10.1074/jbc.M109.036772. Epub 2009/06/30. PubMed PMID: 19561073; PubMed Central PMCID: PMC2757237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nebl T, Prieto JH, Kapp E, Smith BJ, Williams MJ, Yates JR 3rd et al (2011) Quantitative in vivo analyses reveal calcium-dependent phosphorylation sites and identifies a novel component of the Toxoplasma invasion motor complex. PLoS Pathog 7(9):e1002222. https://doi.org/10.1371/journal.ppat.1002222. Epub 2011/10/08. PPATHOGENS-D-10-00615 [pii]. PubMed PMID: 21980283; PubMed Central PMCID: PMC3182922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Williams MJ, Alonso H, Enciso M, Egarter S, Sheiner L, Meissner M et al (2015) Two essential light chains regulate the myoa lever arm to promote Toxoplasma gliding motility. MBio 6(5):e00845–e00815. https://doi.org/10.1128/mBio.00845-15. PubMed PMID: 26374117; PubMed Central PMCID: PMCPMC4600101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Jan G, Delorme V, David V, Revenu C, Rebollo A, Cayla X et al (2007) The toxofilin-actin-PP2C complex of Toxoplasma: identification of interacting domains. Biochem J 401(3):711–719. PubMed PMID: 17014426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Guerin A, Corrales RM, Parker ML, Lamarque MH, Jacot D, El Hajj H et al (2017) Efficient invasion by Toxoplasma depends on the subversion of host protein networks. Nat Microbiol 2(10):1358–1366. https://doi.org/10.1038/s41564-017-0018-1. PubMed PMID: 28848228

    Article  CAS  PubMed  Google Scholar 

  145. Chen AL, Kim EW, Toh JY, Vashisht AA, Rashoff AQ, Van C et al (2015) Novel components of the Toxoplasma inner membrane complex revealed by BioID. MBio 6(1):e02357–e02314. https://doi.org/10.1128/mBio.02357-14. PubMed PMID: 25691595; PubMed Central PMCID: PMCPMC4337574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chen AL, Moon AS, Bell HN, Huang AS, Vashisht AA, Toh JY et al (2017) Novel insights into the composition and function of the Toxoplasma IMC sutures. Cell Microbiol 19(4). https://doi.org/10.1111/cmi.12678. PubMed PMID: 27696623

    Article  CAS  Google Scholar 

  147. Nadipuram SM, Kim EW, Vashisht AA, Lin AH, Bell HN, Coppens I et al (2016) In vivo biotinylation of the Toxoplasma parasitophorous vacuole reveals novel dense granule proteins important for parasite growth and pathogenesis. MBio 7(4). https://doi.org/10.1128/mBio.00808-16. PubMed PMID: 27486190; PubMed Central PMCID: PMCPMC4981711

  148. Long S, Anthony B, Drewry LL, Sibley LD (2017) A conserved ankyrin repeat-containing protein regulates conoid stability, motility and cell invasion in Toxoplasma gondii. Nat Commun 8(1):2236. https://doi.org/10.1038/s41467-017-02341-2. PubMed PMID: 29269729; PubMed Central PMCID: PMCPMC5740107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. de Souza W, Attias M (2015) New views of the Toxoplasma gondii parasitophorous vacuole as revealed by helium ion microscopy (HIM). J Struct Biol 191(1):76–85. https://doi.org/10.1016/j.jsb.2015.05.003. PubMed PMID: 26004092

    Article  PubMed  Google Scholar 

  150. Cyrklaff M, Kudryashev M, Leis A, Leonard K, Baumeister W, Menard R et al (2007) Cryoelectron tomography reveals periodic material at the inner side of subpellicular microtubules in apicomplexan parasites. J Exp Med 204(6):1281–1287. https://doi.org/10.1084/jem.20062405. Epub 2007/06/15. PubMed PMID: 17562819; PubMed Central PMCID: PMC2118598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ferguson DJ, Brecht S, Soldati D (2000) The microneme protein MIC4, or an MIC4-like protein, is expressed within the macrogamete and associated with oocyst wall formation in Toxoplasma gondii. Int J Parasitol 30(11):1203–1209. PubMed PMID: 11027789

    Article  CAS  PubMed  Google Scholar 

  152. Chtanova T, Schaeffer M, Han SJ, van Dooren GG, Nollmann M, Herzmark P et al (2008) Dynamics of neutrophil migration in lymph nodes during infection. Immunity 29(3):487–496. https://doi.org/10.1016/j.immuni.2008.07.012. Epub 2008/08/23. doi: S1074-7613(08)00364-6 [pii]. PubMed PMID: 18718768; PubMed Central PMCID: PMC2569002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wilson EH, Harris TH, Mrass P, John B, Tait ED, Wu GF et al (2009) Behavior of parasite-specific effector CD8+ T cells in the brain and visualization of a kinesis-associated system of reticular fibers. Immunity 30(2):300–311. https://doi.org/10.1016/j.immuni.2008.12.013. Epub 2009/01/27. doi: S1074-7613(09)00060-0 [pii]. PubMed PMID: 19167248; PubMed Central PMCID: PMC2696229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Coombes JL, Charsar BA, Han SJ, Halkias J, Chan SW, Koshy AA et al (2013) Motile invaded neutrophils in the small intestine of Toxoplasma gondii-infected mice reveal a potential mechanism for parasite spread. Proc Natl Acad Sci U S A 110(21):E1913–E1922. https://doi.org/10.1073/pnas.1220272110. Epub 2013/05/08. PubMed PMID: 23650399; PubMed Central PMCID: PMC3666704

    Article  PubMed  PubMed Central  Google Scholar 

  155. Saeij JP, Boyle JP, Grigg ME, Arrizabalaga G, Boothroyd JC (2005) Bioluminescence imaging of Toxoplasma gondii infection in living mice reveals dramatic differences between strains. Infect Immun 73(2):695–702. PubMed PMID: 15664907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Behnke MS, Zhang TP, Dubey JP, Sibley LD (2014) Toxoplasma gondii merozoite gene expression analysis with comparison to the life cycle discloses a unique expression state during enteric development. BMC Genomics 15:350. https://doi.org/10.1186/1471-2164-15-350. PubMed PMID: 24885521; PubMed Central PMCID: PMC4035076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hehl AB, Basso WU, Lippuner C, Ramakrishnan C, Okoniewski M, Walker RA et al (2015) Asexual expansion of Toxoplasma gondii merozoites is distinct from tachyzoites and entails expression of non-overlapping gene families to attach, invade, and replicate within feline enterocytes. BMC Genomics 16:66. https://doi.org/10.1186/s12864-015-1225-x. PubMed PMID: 25757795; PubMed Central PMCID: PMCPMC4340605

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Boothroyd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Boothroyd, J.C. (2020). What a Difference 30 Years Makes! A Perspective on Changes in Research Methodologies Used to Study Toxoplasma gondii. In: Tonkin, C. (eds) Toxoplasma gondii. Methods in Molecular Biology, vol 2071. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9857-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9857-9_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9856-2

  • Online ISBN: 978-1-4939-9857-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics