Skip to main content

Screening, Post-SELEX Optimization and Application of DNA Aptamers Specific for Tobramycin

  • Protocol
  • First Online:
Genotype Phenotype Coupling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2070))

Abstract

Tobramycin (TOB) is an aminoglycoside antibiotic. The residue of TOB in animal-derived foods and environment will be harmful to human health, and therefore the specific detection of TOB residue in food and water is of great importance. Herein, through magnetic beads-based SELEX, overall 37 ssDNA aptamers specific for TOB were screened after ten rounds of selection. The affinity and specificity of these aptamers were evaluated, among which No. 32 aptamer (Ap 32) exhibits excellent performance. Then a post-SELEX optimization of Ap 32 was carried out based on rational design, through which a truncated aptamer with the length of 34 nucleotides (Ap 32-2) was identified as the best aptamer for TOB. Finally, the application of the screened aptamer was explored. A colorimetric assay of TOB was established based on the aptamer-modified gold nanoparticles (AuNPs). In the range from 100 to 1400 nM, the absorbance of AuNPs solution at 520 nm was linearly decreased with the increased concentration of TOB. The detection limit was estimated to be 37.9 nM. The assay was applied to detect TOB residue in honey samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yuan BY, Jiang XC, Chen YY, Guo QP, Wang KM, Meng XX et al (2017) Metastatic cancer cell and tissue-specific fluorescence imaging using a new DNA aptamer developed by cell-SELEX. Talanta 170:56–62

    Article  CAS  Google Scholar 

  2. Bing T, Zhao HM, Lei D, Gan XR, Xie Q (2016) A versatile fluorescent biosensor based on target-responsive graphene oxide hydrogel for antibiotic detection. Biosens Bioelectron 83:267–273

    Article  Google Scholar 

  3. Kong RM, Zhang XB, Zhang L, Jin XY, Huan SY, Shen GL et al (2009) An ultrasensitive electrochemical "turn-on" label-free biosensor for Hg2+ with AuNP-functionalized reporter DNA as a signal amplifier. Chem Commun (Camb) 37:5633–5635

    Article  Google Scholar 

  4. Kuang H, Chen W, Xu DH, Xu LG, Zhu YY, Liu LQ et al (2011) Fabricated aptamer-based electrochemical "signal-off" sensor of ochratoxin a. Biosens Bioelectron 26:710–716

    Article  Google Scholar 

  5. Wilson DS, Szostak JW (2003) In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611–647

    Article  Google Scholar 

  6. Ho H-A, Leclerc M (2004) Optical sensors based on hybrid aptamer/conjugated polymer complexes. J Am Chem Soc 126:1384–1387

    Article  CAS  Google Scholar 

  7. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  8. Huang CJ, Lin HI, Shiesh SC, Lee GB (2010) Integrated microfluidic system for rapid screening of CRP aptamers utilizing systematic evolution of ligands by exponential enrichment (SELEX). Biosens Bioelectron 25:1761–1766

    Article  CAS  Google Scholar 

  9. Darmostuk M, Rimpelova S, Gbelcova H, Ruml T (2015) Current approaches in SELEX: an update to aptamer selection technology. Biotechnol Adv 33:1141–1161

    Article  CAS  Google Scholar 

  10. Cho EJ, Lee JW, Ellington AD (2009) Applications of aptamers as sensors. Annu Rev Anal Chem 2:241–264

    Article  CAS  Google Scholar 

  11. Xing H, Wong NY, Xiang Y, Lu Y (2012) DNA aptamer functionalized nanomaterials for intracellular analysis, cancer cell imaging and drug delivery. Curr Opin Chem Biol 16:429–435

    Article  CAS  Google Scholar 

  12. Iliuk AB, Hu L, Tao WA (2011) Aptamer in bioanalytical applications. Anal Chem 83:4440–4452

    Article  CAS  Google Scholar 

  13. Wochner A, Menger M, Orgel D, Cech B, Rimmele M, Erdmann VA et al (2008) A DNA aptamer with high affinity and specificity for therapeutic anthracyclines. Anal Biochem 373:34–42

    Article  CAS  Google Scholar 

  14. Manyanga V, Elkady E, Hoogmartens J, Adams E (2013) Improved reversed phase liquid chromatographic method with pulsed electrochemical detection for tobramycin in bulk and pharmaceutical formulation. J Pharm Anal 3:161–167

    Article  CAS  Google Scholar 

  15. Shanson DC, Hince CJ, Daniels JV (1976) Rapid microbiologic assay of tobramycin. J Infect Dis 134:S104–S109

    Article  Google Scholar 

  16. Darwish IA (2003) Development of generic continuous-flow enzyme immunoassay system for analysis of aminoglycosides in serum. J Pharm Biomed Anal 30:1539–1548

    Article  CAS  Google Scholar 

  17. Feng CH, Lin SJ, Wu HL, Chen SH (2002) Trace analysis of tobramycin in human plasma by derivatization and high-performance liquid chromatography with ultraviolet detection. J Chromatogr B 780:349–354

    Article  CAS  Google Scholar 

  18. Fonge H, Kaale E, Govaerts C, Desmet K, Van Schepdael A, Hoogmartens J (2004) Bioanalysis of tobramycin for therapeutic drug monitoring by solid-phase extraction and capillary zone electrophoresis. J Chromatogr B 810:313–318

    Article  CAS  Google Scholar 

  19. Song KM, Cho M, Jo H, Min K, Jeon SH, Kim T et al (2011) Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Anal Biochem 415:175–181

    Article  CAS  Google Scholar 

  20. Jiang L, Patel DJ (1998) Solution structure of the tobramycin-RNA aptamer complex. Nat Struct Biol 5:769–774

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 31271860).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandi Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhou, N., Cai, R., Han, X. (2020). Screening, Post-SELEX Optimization and Application of DNA Aptamers Specific for Tobramycin. In: Zielonka, S., Krah, S. (eds) Genotype Phenotype Coupling. Methods in Molecular Biology, vol 2070. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9853-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9853-1_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9852-4

  • Online ISBN: 978-1-4939-9853-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics