Skip to main content

Targeted Mutations in the Mouse via Embryonic Stem Cells

Part of the Methods in Molecular Biology book series (MIMB,volume 2066)

Abstract

Genetic modification of mouse embryonic stem (ES) cells is a powerful technology that enabled the generation of a plethora of mutant mouse lines to study gene function and mammalian biology. Here we describe ES cell culture and transfection techniques used to manipulate the ES cell genome to obtain targeted ES cell clones. We include the standard gene targeting approach as well as the application of the CRISPR/Cas9 system that can improve the efficiency of homologous recombination in ES cells by introducing a double-strand DNA break at the target site.

Key words

  • Mouse
  • Embryonic stem (ES) cells
  • Gene targeting
  • Electroporation
  • Clustered regularly interspaced short palindromic repeats (CRISPR)
  • CRISPR associated protein (Cas9)

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-9837-1_5
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-9837-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bradley A, Evans M, Kaufman MH, Robertson E (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309(5965):255–256

    CAS  CrossRef  Google Scholar 

  2. Capecchi MR (1989) Altering the genome by homologous recombination. Science 244(4910):1288–1292

    CAS  CrossRef  Google Scholar 

  3. Smih F, Rouet P, Romanienko PJ, Jasin M (1995) Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res 23(24):5012–5019

    CAS  CrossRef  Google Scholar 

  4. Bibikova M, Carroll D, Segal DJ, Trautman JK, Smith J, Kim YG et al (2001) Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol 21(1):289–297

    CAS  CrossRef  Google Scholar 

  5. Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP et al (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29(8):731–734

    CAS  CrossRef  Google Scholar 

  6. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    CAS  CrossRef  Google Scholar 

  7. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918

    CAS  CrossRef  Google Scholar 

  8. Byrne SM, Ortiz L, Mali P, Aach J, Church GM (2015) Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res 43(3):e21

    CrossRef  Google Scholar 

  9. Longo L, Bygrave A, Grosveld FG, Pandolfi PP (1997) The chromosome make-up of mouse embryonic stem cells is predictive of somatic and germ cell chimaerism. Transgenic Res 6(5):321–328

    CAS  CrossRef  Google Scholar 

  10. Liu X, Wu H, Loring J, Hormuzdi S, Disteche CM, Bornstein P et al (1997) Trisomy eight in ES cells is a common potential problem in gene targeting and interferes with germ line transmission. Dev Dyn 209(1):85–91

    CAS  CrossRef  Google Scholar 

  11. Codner GF, Lindner L, Caulder A, Wattenhofer-Donze M, Radage A, Mertz A et al (2016) Aneuploidy screening of embryonic stem cell clones by metaphase karyotyping and droplet digital polymerase chain reaction. BMC Cell Biol 17(1):30

    CrossRef  Google Scholar 

  12. Liang Q, Conte N, Skarnes WC, Bradley A (2008) Extensive genomic copy number variation in embryonic stem cells. Proc Natl Acad Sci U S A 105(45):17453–17456

    CAS  CrossRef  Google Scholar 

  13. Bryja V, Bonilla S, Cajanek L, Parish CL, Schwartz CM, Luo Y et al (2006) An efficient method for the derivation of mouse embryonic stem cells. Stem Cells 24(4):844–849

    CrossRef  Google Scholar 

  14. Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J et al (2008) The ground state of embryonic stem cell self-renewal. Nature 453(7194):519–523

    CAS  CrossRef  Google Scholar 

  15. Auerbach W, Dunmore JH, Fairchild-Huntress V, Fang Q, Auerbach AB, Huszar D et al (2000) Establishment and chimera analysis of 129/SvEv- and C57BL/6-derived mouse embryonic stem cell lines. Biotechniques 29(5):1024–8, 30, 32

    CAS  CrossRef  Google Scholar 

  16. Hansen GM, Markesich DC, Burnett MB, Zhu Q, Dionne KM, Richter LJ et al (2008) Large-scale gene trapping in C57BL/6N mouse embryonic stem cells. Genome Res 18(10):1670–1679

    CAS  CrossRef  Google Scholar 

  17. Seong E, Saunders TL, Stewart CL, Burmeister M (2004) To knockout in 129 or in C57BL/6: that is the question. Trends Genet 20(2):59–62

    CAS  CrossRef  Google Scholar 

  18. Ward CM, Barrow KM, Stern PL (2004) Significant variations in differentiation properties between independent mouse ES cell lines cultured under defined conditions. Exp Cell Res 293(2):229–238

    CAS  CrossRef  Google Scholar 

  19. Ware CB, Siverts LA, Nelson AM, Morton JF, Ladiges WC (2003) Utility of a C57BL/6 ES line versus 129 ES lines for targeted mutations in mice. Transgenic Res 12(6):743–746

    CAS  CrossRef  Google Scholar 

  20. Wong ES, Ban KH, Mutalif R, Jenkins NA, Copeland NG, Stewart CL (2010) A simple procedure for the efficient derivation of mouse ES cells. Methods Enzymol 476:265–283

    CAS  CrossRef  Google Scholar 

  21. Poueymirou WT, Auerbach W, Frendewey D, Hickey JF, Escaravage JM, Esau L et al (2007) F0 generation mice fully derived from gene-targeted embryonic stem cells allowing immediate phenotypic analyses. Nat Biotechnol 25(1):91–99

    CAS  CrossRef  Google Scholar 

  22. Nagy A, Gocza E, Diaz EM, Prideaux VR, Ivanyi E, Markkula M et al (1990) Embryonic stem cells alone are able to support fetal development in the mouse. Development 110(3):815–821

    CAS  PubMed  Google Scholar 

  23. Gertsenstein M, Nutter LM, Reid T, Pereira M, Stanford WL, Rossant J et al (2010) Efficient generation of germ line transmitting chimeras from C57BL/6N ES cells by aggregation with outbred host embryos. PLoS One 5(6):e11260

    CrossRef  Google Scholar 

  24. Behringer R, Gertsenstein M, Nagy K, Nagy A (2014) Manipulating the mouse embryo: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  25. Kondoh G, Yamamoto Y, Yoshida K, Suzuki Y, Osuka S, Nakano Y et al (1999) Easy assessment of ES cell clone potency for chimeric development and germ-line competency by an optimized aggregation method. J Biochem Biophys Methods 39(3):137–142

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Gertsenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Gertsenstein, M., Mianné, J., Teboul, L., Nutter, L.M.J. (2020). Targeted Mutations in the Mouse via Embryonic Stem Cells. In: Larson, M. (eds) Transgenic Mouse. Methods in Molecular Biology, vol 2066. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9837-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9837-1_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9836-4

  • Online ISBN: 978-1-4939-9837-1

  • eBook Packages: Springer Protocols