Skip to main content

Simple Transportation of Genetically Engineered Mice via Cold Storage Techniques

  • 1762 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 2066)


Live genetically modified (GM) mice are often shipped in transportation cages. However, the shipment of live mice is sometimes associated with difficulties. Recently, we developed an alternative means to transport GM mice via cold storage techniques for sperm and embryos. Cold storage of the cauda epididymis, the male reproductive organ for storing mature sperm, can maintain the fertility of sperm in cold preservation medium for 10 days. The sperm can then be used to produce embryos or pups via in vitro fertilization and embryo transfer. Conversely, cold-stored two-cell embryos maintain developmental ability for 4 days. The embryos can be used to produce pups via embryo transfer. Cold transport techniques are being increasingly employed to create local and global networks between research institutes for the shipment of GM mice. In this text, we described a cold transport technique for sperm and two-cell embryos in mice.

Key words

  • Transportation
  • Cold storage
  • Cauda epididymis
  • Two-cell embryo

This is a preview of subscription content, access via your institution.

Buying options

USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-9837-1_17
  • Chapter length: 6 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-9837-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more


  1. Takeo T, Tsutsumi A, Omaru T, Fukumoto K, Haruguchi Y, Kondo T, Nakamuta Y, Takeshita Y, Matsunaga H, Tsuchiyama S, Sakoh K, Nakao S, Yoshimoto H, Shimizu N, Nakagata N (2012) Establishment of a transport system for mouse epididymal sperm at refrigerated temperatures. Cryobiology 65(3):163–168.

    CrossRef  PubMed  Google Scholar 

  2. Yoshimoto H, Takeo T, Irie T, Nakagata N (2017) Fertility of cold-stored mouse sperm is recovered by promoting acrosome reaction and hyperactivation after cholesterol efflux by methyl-beta-cyclodextrin. Biology of Reproduction 96(2):446-455

    CrossRef  Google Scholar 

  3. Yoshimoto H, Takeo T, Nakagata N (2017) Dimethyl sulfoxide and quercetin prolong the survival, motility, and fertility of cold-stored mouse sperm for 10 days†. Biology of Reproduction 97(6):883-891

    CrossRef  Google Scholar 

  4. Takeo T, Hoshii T, Kondo Y, Toyodome H, Arima H, Yamamura K, Irie T, Nakagata N (2008) Methyl-beta-cyclodextrin improves fertilizing ability of C57BL/6 mouse sperm after freezing and thawing by facilitating cholesterol efflux from the cells. Biol Reprod 78(3):546–551.

    CAS  CrossRef  PubMed  Google Scholar 

  5. Takeo T, Nakagata N (2011) Reduced glutathione enhances fertility of frozen/thawed C57BL/6 mouse sperm after exposure to methyl-beta-cyclodextrin. Biol Reprod 85(5):1066–1072.

    CAS  CrossRef  PubMed  Google Scholar 

  6. Nakagata N, Takeo T, Fukumoto K, Kondo T, Haruguchi Y, Takeshita Y, Nakamuta Y, Matsunaga H, Tsuchiyama S, Ishizuka Y, Araki K (2013) Applications of cryopreserved unfertilized mouse oocytes for in vitro fertilization. Cryobiology 67(2):188–192.

    CrossRef  PubMed  Google Scholar 

  7. Takeo T, Fukumoto K, Kondo T, Haruguchi Y, Takeshita Y, Nakamuta Y, Tsuchiyama S, Yoshimoto H, Shimizu N, Li MW, Kinchen K, Vallelunga J, Lloyd KC, Nakagata N (2014) Investigations of motility and fertilization potential in thawed cryopreserved mouse sperm from cold-stored epididymides. Cryobiology 68(1):12–17.

    CrossRef  PubMed  Google Scholar 

  8. Takeo T, Nakagata N (2010) Combination medium of cryoprotective agents containing L-glutamine and methyl-{beta}-cyclodextrin in a preincubation medium yields a high fertilization rate for cryopreserved C57BL/6J mouse sperm. Lab Anim 44(2):132–137.

    CAS  CrossRef  PubMed  Google Scholar 

  9. Takeo T, Kondo T, Haruguchi Y, Fukumoto K, Nakagawa Y, Takeshita Y, Nakamuta Y, Tsuchiyama S, Shimizu N, Hasegawa T, Goto M, Miyachi H, Anzai M, Fujikawa R, Nomaru K, Kaneko T, Itagaki Y, Nakagata N (2010) Short-term storage and transport at cold temperatures of 2-cell mouse embryos produced by cryopreserved sperm. J Am Assoc Lab Anim Sci 49(4):415–419

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Horikoshi Y, Takeo T, Nakagata N (2016) N-acetyl cysteine prolonged the developmental ability of mouse two-cell embryos against oxidative stress at refrigerated temperatures. Cryobiology 72(3):198–204.

    CAS  CrossRef  PubMed  Google Scholar 

Download references


The authors thank Yuka Horikoshi, Shiori Takeuji, Kiyoko Yamashita, Tomoko Kondo, Yukie Haruguchi, Yumi Takeshita, Yuko Nakamuta, and Shuuji Tsuchiyama (CARD, Kumamoto University) for technical support. This work was partially supported by grants of the National Bioresource Project from the Ministry of Education, Culture, Sports, Science and Technology of Japan and Research on Development of New Drugs from the Japan Agency for Medical Research and Development.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Toru Takeo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Yoshimoto, H., Takeo, T., Nakagata, N. (2020). Simple Transportation of Genetically Engineered Mice via Cold Storage Techniques. In: Larson, M. (eds) Transgenic Mouse. Methods in Molecular Biology, vol 2066. Humana, New York, NY.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9836-4

  • Online ISBN: 978-1-4939-9837-1

  • eBook Packages: Springer Protocols