Skip to main content

A General Protocol for Accurate Gene Expression Analysis in Plants

  • Protocol
  • First Online:
Quantitative Real-Time PCR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2065))

Abstract

Gene expression analysis by means of RT-qPCR is a highly sensitive technique. However, this requires an accurate protocol for the whole procedure from sampling to data analysis. We have optimized this protocol specifically for the analysis of plant tissues. Special attention is paid to RNA quality and integrity and to the appropriate setup of the assays in order to be compliant with the MIQE guidelines. This protocol was already successfully applied in ten different plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luypaert G, Witters J, Van Huylenbroeck J et al (2017) Induced expression of selected plant defence related genes in pot azalea, Rhododendron simsii hybrid. Euphytica 213:227

    Article  Google Scholar 

  2. Die JV, Roman B (2012) RNA quality assessment: a view from plant qPCR studies. J Exp Bot 63:6069–6077

    Article  CAS  Google Scholar 

  3. De Keyser E, Desmet L, Van Bockstaele E et al (2013) How to perform RT-qPCR accurately in plant species? A case study on flower colour gene expression analysis in an azalea (Rhododendron simsii hybrids) mapping population. BMC Mol Biol 14:13. https://doi.org/10.1186/1471-2199-14-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guttierrez L, Mauriat M, Guénin S, Pelloux J et al (2008) The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription – polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol J 6:609–618

    Article  Google Scholar 

  5. Czechowski T, Stitt M, Altmann T et al (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  CAS  Google Scholar 

  6. Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  Google Scholar 

  7. Nolan T, hands RE, Ogunkolade BW et al (2006) SPUD: a qPCR assay for the detection of inhibitors in nucleic acid preparations. Anal Biochem 351:308–310

    Article  CAS  Google Scholar 

  8. Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034.1–research 0034.11

    Article  Google Scholar 

  9. Hellemans J, Mortier G, De Paepe A et al (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19

    Article  Google Scholar 

  10. Ruijter JM, Ramakers C, Hoogaars WMH et al (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37:e45–e45

    Article  CAS  Google Scholar 

  11. Berruti A, Christiaens A, De Keyser E et al (2015) Cold treatment breaks dormancy but jeopardizes flower quality in Camellia japonica L. Front Plant Sci 6:983

    Article  Google Scholar 

  12. Ouyang L, Leus L, De Keyser E et al (2019) Seasonal changes in cold hardiness and carbohydrate metabolism in four garden rose cultivars. J Plant Physiol 232:188–199

    Article  CAS  Google Scholar 

  13. Merlaen B, De Keyser E, Van Labeke MC (2018) Identification and substrate prediction of new Fragaria x ananassa aquaporins and expression in different tissues and during strawberry fruit development. Hortic Res 5:20

    Article  Google Scholar 

  14. Dierck R, Leus L, Dhooghe E et al (2018) Branching gene expression during chrysanthemum axillary bud outgrowth regulated by strigolactone and auxin transport. Plant Growth Regul 86:23–36

    Article  CAS  Google Scholar 

  15. Luu-The V, Paquet N, Calvo E, Cumps J (2005) Improved realt-time RT-PCR method for high-throughput measurements using second derivative calculation and double correction. BioTechniques 38:287–293

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen De Keyser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

De Keyser, E., Desmet, L., Losschaert, M., De Riek, J. (2020). A General Protocol for Accurate Gene Expression Analysis in Plants. In: Biassoni, R., Raso, A. (eds) Quantitative Real-Time PCR. Methods in Molecular Biology, vol 2065. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9833-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9833-3_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9832-6

  • Online ISBN: 978-1-4939-9833-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics