Skip to main content

Evaluation of the Abundance of Fungi in Wastewater Treatment Plants Using Quantitative PCR (qPCR)

  • Protocol
  • First Online:
Quantitative Real-Time PCR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2065))

Abstract

Assessment of the abundance of fungi in environmental samples by quantitative PCR (qPCR) of community DNA is often a difficult task due to biases introduced during PCR amplification, resulting from the differences associated with length polymorphism and the varying number of copies of the rRNA operon among fungal species, the lack of specificity of the primers targeting the different regions of the rRNA operon, or their insufficient coverage of the fungal lineages. To overcome those limitations, it is crucial to test and select the specific primers sets which provide the more accurate approximation to the quantification of the targeted fungal populations in a given set of samples. Fungi are a significant fraction of the microbiota in wastewater treatment plants (WWTPs), but the activated sludge microbial communities comprise many other eukaryotic microorganisms whose molecular markers are often coamplified by primers initially designed as fungal-specific. Here, the use of the FungiQuant primer set is recommended for the quantification of fungal molecular markers (18S rRNA genes) by qPCR in activated sludge samples and the full protocol is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferrera I, Sánchez O (2016) Insights into microbial diversity in wastewater treatment systems: how far have we come? Biotechnol Adv 3:790–802. https://doi.org/10.1016/j.biotechadv.2016.04.003

    Article  CAS  Google Scholar 

  2. Seviour RJ, Nielsen PH (2010) Microbial communities in activated sludge plants. In: Seviour RJ, Nielsen PH (eds) Microbial ecology of activated sludge, 2nd edn. IWA Publishing, London, pp 95–125

    Google Scholar 

  3. Maza-Márquez P, Vílchez-Vargas R, González-Martínez A et al (2018) Assessing the abundance of fungal populations in a full-scale membrane bioreactor (MBR) treating urban wastewater by using quantitative PCR (qPCR). J Environ Manag 223:1–8. https://doi.org/10.1016/j.jenvman.2018.05.093

    Article  CAS  Google Scholar 

  4. Gallardo-Altamirano MJ, Maza-Márquez P, Peña-Herrera JM et al (2018) Removal of anti-inflammatory/analgesic pharmaceuticals from urban wastewater in a pilot-scale A2O system: linking performance and microbial population dynamics to operating variables. Sci Total Environ 643:1481–1492. https://doi.org/10.1016/j.scitotenv.2018.06.284

    Article  CAS  PubMed  Google Scholar 

  5. Liébana R, Arregui L, Belda I et al (2015) Membrane bioreactor wastewater treatment plants reveal diverse yeast and protist communities of potential significance in biofouling. Biofouling 31:71–82. https://doi.org/10.1080/08927014.2014.998206

    Article  PubMed  Google Scholar 

  6. Yang Q, Angly FE, Wang Z et al (2011) Wastewater treatment systems harbor specific and diverse yeast communities. Biochem Eng J 58–59:168–176

    Article  Google Scholar 

  7. Yang Q, Wang J, Wang H et al (2012) Evolution of the microbial community in a full-scale printing and dyeing wastewater treatment system. Bioresour Technol 117:155–163. https://doi.org/10.1016/j.biortech.2012.04.059

    Article  CAS  PubMed  Google Scholar 

  8. Smith CJ, Osborn AM (2009) Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol 67:6–20. https://doi.org/10.1111/j.1574-6941.2008.00629.x

    Article  CAS  PubMed  Google Scholar 

  9. Prévost-Bouré NC, Christen R, Dequiedt S et al (2011) Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS One 6(9):e24166. https://doi.org/10.1371/journal.pone.0024166

    Article  CAS  Google Scholar 

  10. Wurzbacher C, Rösel S, Rychła A et al (2014) Importance of saprotrophic freshwater fungi for pollen degradation. PLoS One 9(4):e94643. https://doi.org/10.1371/journal.pone.0094643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lindahl BD, Nilsson RH, Tedersoo L et al (2013) Fungal community analysis by high-throughput sequencing of amplified markers-a user’s guide. New Phytol 199:288–299. https://doi.org/10.1111/nph.12243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schoch CL, Seifert KA, Huhndorf S et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109:6241–6246. https://doi.org/10.1073/pnas.1117018109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Badotti F, de Oliveira FS, Garcia CF et al (2017) Effectiveness of ITS and sub-regions as DNA barcode markers for the identification of Basidiomycota (Fungi). BMC Microbiol 17:42. https://doi.org/10.1186/s12866-017-0958-x

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kiss L (2012) Limits of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences as species barcodes for Fungi. Proc Natl Acad Sci U S A 109:E1811. https://doi.org/10.1073/pnas.1207143109

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bellemain E, Carlsen T, Brochmann C et al (2010) ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 10:189. https://doi.org/10.1186/1471-2180-10-189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Anderson IC, Cairney JWG (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769–779. https://doi.org/10.1111/j.1462-2920.2004.00675.x

    Article  CAS  PubMed  Google Scholar 

  17. Bokulich NA, Mills DA (2013) Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Appl Environ Microbiol 79:2519–2526. https://doi.org/10.1128/AEM.03870-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ihrmark K, Bödeker ITM, Cruz-Martinez K et al (2012) New primers to amplify the fungal ITS2 region-evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677. https://doi.org/10.1111/j.1574-6941.2012.01437.x

    Article  CAS  PubMed  Google Scholar 

  19. Liu CM, Kachur S, Dwan MG et al (2012) FungiQuant: a broad-coverage fungal quantitative real-time PCR assay. BMC Microbiol 12:255. https://doi.org/10.1186/1471-2180-12-255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martin KJ, Rygiewicz PT (2005) Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol 5:28. https://doi.org/10.1186/1471-2180-5-28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mitchell JI, Zuccaro A (2006) Sequences, the environment and fungi. Mycologist 20:62–74

    Article  Google Scholar 

  22. Taylor DL, Walters WA, Lennon NJ et al (2016) Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for Illumina amplicon sequencing. Appl Environ Microbiol 82(24):7217–7722. https://doi.org/10.1128/AEM.02576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. White TJ, Bruns T, Lee S et al (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  24. Evans TN, Seviour RJ (2012) Estimating biodiversity of fungi in activated sludge communities using culture-independent methods. Microb Ecol 63:773–786. https://doi.org/10.1007/s00248-011-9984-7

    Article  PubMed  Google Scholar 

  25. Hoshino YT, Morimoto S (2010) Soil clone library analyses to evaluate specificity and selectivity of PCR primers targeting fungal 18S rDNA for denaturing-gradient gel electrophoresis (DGGE). Microbes Environ 25:281–287

    Article  Google Scholar 

  26. Wallander H, Ekblad A, Godbold DL et al (2007) Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils - a review. Soil Biol Biochem 57:1034–1047

    Article  Google Scholar 

  27. May LA, Smiley B, Schmidt MG (2001) Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage. Can J Microbiol 47:829–841

    Article  CAS  Google Scholar 

  28. Niu L, Li Y, Xu L et al (2017) Ignored fungal community in activated sludge wastewater treatment plants: diversity and altitudinal characteristics. Environ Sci Pollut Res 24:4185–4193. https://doi.org/10.1007/s11356-016-8137-4

    Article  CAS  Google Scholar 

  29. González-Martínez A, Sihvonen M, Muñoz-Palazón B et al (2018) Microbial ecology of full-scale wastewater treatment systems in the polar Arctic circle: Archaea. Bacteria and Fungi. Sci Rep 8:2208. https://doi.org/10.1038/s41598-018-20633-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. González-Martínez A, Muñoz-Palazón B, Maza-Márquez P et al (2018) Performance and microbial community structure of a polar Arctic circle aerobic granular sludge system operating at low temperature. Bioresour Technol 256:22–29. https://doi.org/10.1016/j.biortech.2018.01.147

    Article  CAS  PubMed  Google Scholar 

  31. Penton CR, Louis DS, Cole JR et al (2013) Fungal diversity in permafrost and tallgrass prairie souls under experimental warming conditions. Appl Environ Microbiol 79:7063–7072. https://doi.org/10.1128/AEM.01702-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vainio EJ, Hantula J (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycological Res 104:927–936

    Article  CAS  Google Scholar 

  33. Wei Z, Liu Y, Feng K et al (2018) The divergence between fungal and bacterial communities in seasonal and spatial variations of wastewater treatment plants. Sci Total Environ 628–629:969–978. https://doi.org/10.1016/j.scitotenv.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  34. Maza-Márquez P, Vilchez-Vargas R, Kerckhof FM et al (2016) Community structure, population dynamics and diversity of fungi in a full-scale membrane bioreactor (MBR) for urban wastewater treatment. Water Res 105:507–519. https://doi.org/10.1016/j.watres.2016.09.021

    Article  CAS  PubMed  Google Scholar 

  35. Biyeyeme Bi Mve MJ, Cloutier Y, Lacombe N et al (2017) Comparison of methods to evaluate the fungal biomass in heating, ventilation, and air-conditioning (HVAC) dust. Environ Monit Assess 189:8. https://doi.org/10.1007/s10661-016-5682-8

    Article  CAS  Google Scholar 

  36. Wymore AS, Compson ZG, Liu CM et al (2013) Contrasting rRNA gene abundance patterns for aquatic fungi and bacteria in response to leaf-litter chemistry. Freshw Sci 32:663–672

    Article  Google Scholar 

  37. TBE electrophoresis buffer (10×) (2010) Cold Spring Harb Protoc. http://cshprotocols.cshlp.org/content/2010/6/pdb.rec12231.full

  38. Thermo Scientific (2009) T042-Technical Bulletin NanoDrop® Spectrophotometers. http://www.nhm.ac.uk/content/dam/nhmwww/our-science/dpts-facilities-staff/Coreresearchlabs/nanodrop.pdf

  39. Jackson GA, Livingston RS, Riley LK et al (2013) Development of a PCR assay for the detection of Spironucleus muris. J Am Assoc Lab Animal Sci 52:165–170

    CAS  Google Scholar 

  40. Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  41. Maza-Márquez P, González-Martínez A, Rodelas B et al (2017) Full-scale photobioreactor for biotreatment of olive washing water: structure and diversity of the microalgae-bacteria consortium. Bioresour Technol 238:389–398. https://doi.org/10.1016/j.biortech.2017.04.048

    Article  CAS  PubMed  Google Scholar 

  42. Guo F, Zhang T (2013) Biases during DNA extraction of activated sludge samples revealed by high throughput sequencing. Appl Microbiol Biotechnol 97:4607–4616

    Article  CAS  Google Scholar 

  43. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor, New York

    Google Scholar 

  44. Forlenza M, Kaiser T, Savelkoul HFJ et al (2012) The use of real-time quantitative PCR for the analysis of cytokine mRNA levels. Methods Mol Biol 820:7–23. https://doi.org/10.1007/978-1-61779-439-1_2.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Junta de Andalucía, Plan Andaluz de Investigación (Environmental Microbiology Group, RNM-270).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Maza-Márquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Maza-Márquez, P., Aranda, E., González-López, J., Rodelas, B. (2020). Evaluation of the Abundance of Fungi in Wastewater Treatment Plants Using Quantitative PCR (qPCR). In: Biassoni, R., Raso, A. (eds) Quantitative Real-Time PCR. Methods in Molecular Biology, vol 2065. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9833-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9833-3_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9832-6

  • Online ISBN: 978-1-4939-9833-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics