Skip to main content

Enhanced Probe-Based RT-qPCR Quantification of MicroRNAs Using Poly(A) Tailing and 5′ Adaptor Ligation

  • Protocol
  • First Online:
  • 3851 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2065))

Abstract

Probe-based quantitative PCR (qPCR) is a commonly used tool in the realm of real-time qPCR experiments since it is one of the most sensitive detection methods allowing an accurate and reproducible analysis. It uses real-time fluorescence from a fluorescently labeled probe that specifically targets the desired PCR product to measure DNA amplification at each cycle of the PCR. Coupled to a proper reverse transcription step, probe-based qPCR can be efficiently used for the analysis of the expression of difficult targets such as miRNAs. In this chapter, we describe the TaqMan® advanced miRNA assay in which, owing to a poly(A)-tailing step, the reverse transcription is advantageously performed at once for all the miRNAs in a given sample, and, coupled to the ligation of a 5′ universal adapter, allows for a supplementary pre-qPCR amplification step increasing the sensitivity of the assay. Along this protocol, we also provide our general guidelines and advices to perform a reliable and successful quantitative analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Basak I, Patil KS, Alves G et al (2016) MicroRNAs as neuroregulators, biomarkers and therapeutic agents in neurodegenerative diseases. Cell Mol Life Sci 73:811–827. https://doi.org/10.1007/s00018-015-2093-x

    Article  CAS  PubMed  Google Scholar 

  2. Bertoli G, Cava C, Castiglioni I (2016) MicroRNAs as biomarkers for diagnosis, prognosis and theranostics in prostate cancer. Int J Mol Sci 17:421. https://doi.org/10.3390/ijms17030421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sastre B, Cañas JA, Rodrigo-Muñoz JM et al (2017) Novel modulators of asthma and allergy: exosomes and microRNAs. Front Immunol 8:826. https://doi.org/10.3389/fimmu.2017.00826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bissels U, Wild S, Tomiuk S et al (2009) Absolute quantification of microRNAs by using a universal reference. RNA 15:2375–2384. https://doi.org/10.1261/rna.1754109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bosson AD, Zamudio JR, Sharp PA (2014) Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol Cell 56:347–359. https://doi.org/10.1016/j.molcel.2014.09.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179. https://doi.org/10.1093/nar/gni178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Afonina I, Zivarts M, Kutyavin I et al (1997) Efficient priming of PCR with short oligonucleotides conjugated to a minor groove binder. Nucleic Acids Res 25:2657–2660

    Article  CAS  Google Scholar 

  8. Kutyavin IV, Lukhtanov EA, Gamper HB et al (1997) Oligonucleotides with conjugated dihydropyrroloindole tripeptides: base composition and backbone effects on hybridization. Nucleic Acids Res 25:3718–3723

    Article  CAS  Google Scholar 

  9. Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  10. Yang L, Wang S, Tang L et al (2014) Universal stem-loop primer method for screening and quantification of microRNA. PLoS One 9:e115293. https://doi.org/10.1371/journal.pone.0115293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nolan T, Hands RE, Ogunkolade W et al (2006) SPUD: a quantitative PCR assay for the detection of inhibitors in nucleic acid preparations. Anal Biochem 351:308–310. https://doi.org/10.1016/j.ab.2006.01.051

    Article  CAS  PubMed  Google Scholar 

  12. Bustin SA, Benes V, Garson J et al (2013) The need for transparency and good practices in the qPCR literature. Nat Methods 10:1063–1067. https://doi.org/10.1038/nmeth.2697

    Article  CAS  PubMed  Google Scholar 

  13. Bustin SA (2014) The reproducibility of biomedical research: sleepers awake! Biomol Detect Quantif 2:35–42. https://doi.org/10.1016/j.bdq.2015.01.002

    Article  PubMed  Google Scholar 

  14. Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034

    Article  Google Scholar 

  15. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. https://doi.org/10.1158/0008-5472.CAN-04-0496

    Article  CAS  PubMed  Google Scholar 

  16. Pfaffl MW, Tichopad A, Prgomet C et al (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  Google Scholar 

  17. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  18. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a public grant overseen by the French National Research Agency (ANR) as part of the second “Investissements d’Avenir” program FIGHT-HF (reference: ANR-15-RHU-0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Behm-Ansmant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vautrot, V., Behm-Ansmant, I. (2020). Enhanced Probe-Based RT-qPCR Quantification of MicroRNAs Using Poly(A) Tailing and 5′ Adaptor Ligation. In: Biassoni, R., Raso, A. (eds) Quantitative Real-Time PCR. Methods in Molecular Biology, vol 2065. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9833-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9833-3_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9832-6

  • Online ISBN: 978-1-4939-9833-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics