Skip to main content

MIQE-Compliant Validation of MicroRNA Biomarker Signatures Established by Small RNA Sequencing

  • Protocol
  • First Online:
Quantitative Real-Time PCR

Abstract

MicroRNAs (miRNAs), a class of small non-coding RNAs that modulate gene expression at the post-transcriptional level, are attractive targets in many academic and diagnostic applications. Among them, assessing miRNA biomarkers in minimally invasive liquid biopsies was shown to be a promising tool for managing diseases, particularly cancer. The initial screening of disease-relevant transcripts is often performed by high-throughput next-generation sequencing (NGS), in here RNA sequencing (RNA-Seq). After complex processing of small RNA-Seq data, differential gene expression analysis is performed to evaluate miRNA biomarker signatures. To ensure experimental validity, biomarker candidates are commonly validated by an orthogonal technology such as reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). This chapter outlines in detail the material and methods one can apply to reproducibly identify miRNA biomarker signatures from blood total RNA. After screening miRNA profiles by small RNA-Seq, resulting data is validated in compliance with the “Minimum Information for Publication of Quantitative Real-Time PCR Experiments” (MIQE) guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buschmann D, Haberberger A, Kirchner B et al (2016) Toward reliable biomarker signatures in the age of liquid biopsies - how to standardize the small RNA-Seq workflow. Nucleic Acids Res 44:5995–6018. https://doi.org/10.1093/nar/gkw545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pfaffl MW (2013) Transcriptional biomarkers. Methods 59:1–2. https://doi.org/10.1016/j.ymeth.2012.12.011

    Article  CAS  PubMed  Google Scholar 

  3. Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5(6):463–466. https://doi.org/10.1097/COH.0b013e32833ed177

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang J, Chen J, Sen S (2016) MicroRNA as biomarkers and diagnostics. J Cell Physiol 231(1):25–30. https://doi.org/10.1002/jcp.25056

    Article  CAS  PubMed  Google Scholar 

  5. Ghai V, Wang K (2016) Recent progress toward the use of circulating microRNAs as clinical biomarkers. Arch Toxicol 90(12):2959–2978. https://doi.org/10.1007/s00204-016-1828-2

    Article  CAS  PubMed  Google Scholar 

  6. Arneth B (2018) Update on the types and usage of liquid biopsies in the clinical setting: a systematic review. BMC Cancer 18(1):527. https://doi.org/10.1186/s12885-018-4433-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reithmair M, Buschmann D, Marte M et al (2017) Cellular and extracellular miRNAs are blood-compartment-specific diagnostic targets in sepsis. J Cell Mol Med 21:2403. https://doi.org/10.1111/jcmm.13162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gibson U, Heid A, Williams P (1996) A novel method for real time quantitative RT-PCR. Genome Res 6:995–1001

    Article  CAS  Google Scholar 

  9. Morrison T, Weiss J, Wittwer C (1998) Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. BioTechniques 24:954–962

    CAS  PubMed  Google Scholar 

  10. Arya M, Shergill IS, Williamson M et al (2005) Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn 5:209–219. https://doi.org/10.1586/14737159.5.2.209

    Article  CAS  PubMed  Google Scholar 

  11. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  12. Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  13. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

    Google Scholar 

  14. Schroeder A, Mueller O, Stocker S et al (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3. https://doi.org/10.1186/1471-2199-7-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kong Y (2011) Btrim: a fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics 98(2):152–153. https://doi.org/10.1016/j.ygeno.2011.05.009

    Article  CAS  PubMed  Google Scholar 

  16. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data

    Google Scholar 

  17. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–D73. https://doi.org/10.1093/nar/gkt1181

    Article  CAS  PubMed  Google Scholar 

  18. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. https://doi.org/10.1186/gb-2009-10-3-r25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Love MI, Huber W et al (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    Article  Google Scholar 

  22. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250. https://doi.org/10.1158/0008-5472.CAN-04-0496

    Article  CAS  PubMed  Google Scholar 

  23. Pfaffl MW, Tichopad A, Prgomet C et al (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—excel-based tool using pair-wise correlations. Biotechnol Lett 26(6):509–515

    Article  CAS  Google Scholar 

  24. Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838. https://doi.org/10.1038/nature03702

    Article  CAS  PubMed  Google Scholar 

  25. Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103:2257–2261. https://doi.org/10.1073/pnas.0510565103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Burns MJ, Nixon GJ, Foy CA (2005) Standardisation of data from real-time quantitative PCR methods - evaluation of outliers and comparison of calibration curves. BMC Biotechnol 5:31. https://doi.org/10.1186/1472-6750-5-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Komsta L (2011) Outliers: tests for outliers, R package version 0.14. https://CRAN.R-project.org/package=outliers

    Google Scholar 

  28. Millard SP (2013) EnvStats: an R package for environmental statistics. Springer, New York

    Book  Google Scholar 

  29. Kaur H, Arora A, Wengel J (2006) Thermodynamic, counterion, and hydration effects for the incorporation of locked nucleic acid nucleotides into DNA duplexes. Biochemistry 45:7347–7355. https://doi.org/10.1021/bi060307w

    Article  CAS  PubMed  Google Scholar 

  30. Schrader C, Schielke A, Ellerbroek L et al (2012) PCR inhibitors - occurrence, properties and removal. J Appl Microbiol 113:1014–1026. https://doi.org/10.1111/j.1365-2672.2012.05384.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Pfaffl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mussack, V., Hermann, S., Buschmann, D., Kirchner, B., Pfaffl, M.W. (2020). MIQE-Compliant Validation of MicroRNA Biomarker Signatures Established by Small RNA Sequencing. In: Biassoni, R., Raso, A. (eds) Quantitative Real-Time PCR. Methods in Molecular Biology, vol 2065. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9833-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9833-3_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9832-6

  • Online ISBN: 978-1-4939-9833-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics