Skip to main content

Compact Quantum Dots for Quantitative Cytology

  • Protocol
  • First Online:
Single Cell Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2064))

Abstract

In this chapter, we describe the preparation of fluorescent quantum dots for imaging and measuring protein expression in cells. Quantum dots are nanocrystals that have numerous advantages for biomolecular detection compared with organic dyes and fluorescent proteins, but their large size has been a limiting factor. We describe the synthesis of nanoparticles smaller than 10 nm (smaller than an antibody), their attachment to monoclonal antibodies through click chemistry, characterization of the conjugates, and use for labeling of cellular antigens. We further discuss the unique advantages and challenges associated with this approach compared with conventional immunofluorescence techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu R, Wu P, Yang L et al (2014) Inductively coupled plasma mass spectrometry-based immunoassay: a review. Mass Spectrom Rev 33:373–393

    Article  Google Scholar 

  2. Lu J, Tsourkas A (2009) Imaging individual microRNAs in single mammalian cells in situ. Nucleic Acids Res 37:e100

    Article  Google Scholar 

  3. Xing Y, Smith AM, Agrawal A et al (2006) Molecular profiling of single cancer cells and clinical tissue specimens with semiconductor quantum dots. Int J Nanomedicine 1:473–481

    Article  CAS  Google Scholar 

  4. Zong C, Lu S, Chapman AR et al (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338:1622–1626

    Article  CAS  Google Scholar 

  5. Xue Z, Huang K, Cai C et al (2013) Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500:593–597

    Article  CAS  Google Scholar 

  6. Chen C, Peng J, Xia H-S et al (2009) Quantum dots-based immunofluorescence technology for the quantitative determination of HER2 expression in breast cancer. Biomaterials 30:2912–2918

    Article  CAS  Google Scholar 

  7. Zrazhevskiy P, Gao X (2013) Quantum dot imaging platform for single-cell molecular profiling. Nat Commun 4:1619

    Article  Google Scholar 

  8. Xu H, Xu J, Wang X et al (2013) Quantum dot-based, quantitative, and multiplexed assay for tissue staining. ACS Appl Mater Interfaces 5:2901–2907

    Article  CAS  Google Scholar 

  9. Kairdolf BA, Smith AM, Stokes TH et al (2013) Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu Rev Anal Chem 6:143–162

    Article  CAS  Google Scholar 

  10. Le P, Lim SJ, Baculis BC, Chung HJ, Kilian KA, Smith AM (2019) Counting growth factors in single cells with infrared quantum dots to measure discrete stimulation distributions. Nat Commun 10(909). (2019) https://www.nature.com/articles/s41467-019-08754-5

  11. Liu Y, Le P, Lim SJ, Ma L, Sarkar S, Han Z, Murphy SJ, Kosari F, Vasmatzis G, Cheville JC, Smith AM (2018) Enhanced mRNA FISH with compact quantum dots. Nat Commun 9(4461). https://www.nature.com/articles/s41467-018-06740-x

  12. Chan WCW, Maxwell DJ, Gao X et al (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46

    Article  CAS  Google Scholar 

  13. Smith AM, Nie SM (2009) Next-generation quantum dots. Nat Biotechnol 27:732–733

    Article  CAS  Google Scholar 

  14. Pinaud F, Clarke S, Sittner A et al (2010) Probing cellular events, one quantum dot at a time. Nat Methods 7:275–285

    Article  CAS  Google Scholar 

  15. Howarth M, Liu W, Puthenveetil S et al (2008) Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat Methods 5:397–399

    Article  CAS  Google Scholar 

  16. Smith AM, Nie S (2008) Minimizing the hydrodynamic size of quantum dots with multifunctional multidentate polymer ligands. J Am Chem Soc 130:11278–11279

    Article  CAS  Google Scholar 

  17. Liu W, Greytak AB, Lee J et al (2010) Compact biocompatible quantum dots via RAFT-mediated synthesis of imidazole-based random copolymer ligand. J Am Chem Soc 132(2):472–483

    Article  CAS  Google Scholar 

  18. Ma L, Tu C, Le P, Chitoor S, Lim SJ, Zahid MU, Teng KW, Ge P, Selvin PR, Smith AM (2016) Multidentate polymer coatings for compact and homogeneous quantum dots with efficient bioconjugation. J Am Chem Soc 138(10):3382–;3394. https://pubs.acs.org/doi/10.1021/jacs.5b12378

    Article  CAS  Google Scholar 

  19. Baskin JM, Prescher JA, Laughlin ST et al (2007) Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci 104:16793–16797

    Article  CAS  Google Scholar 

  20. Thorek DLJ, Elias DR, Tsourkas A (2009) Comparative analysis of nanoparticle-antibody conjugations: carbodiimide versus click chemistry. Mol Imaging 8:221–229

    Article  CAS  Google Scholar 

  21. Zhang P, Liu S, Gao D et al (2012) Click-functionalized compact quantum dots protected by multidentate-imidazole ligands: conjugation-ready nanotags for living-virus labeling and imaging. J Am Chem Soc 134:8388–8391

    Article  CAS  Google Scholar 

  22. Zheng M, Davidson F, Huang X (2003) Ethylene glycol monolayer protected nanoparticles for eliminating nonspecific binding with biological molecules. J Am Chem Soc 125:7790–7791

    Article  CAS  Google Scholar 

  23. Yarden Y (2001) The EGFR family and its ligands in human cancer: signalling mechanisms and therapeutic opportunities. Eur J Cancer 37:3–8

    Article  Google Scholar 

  24. Smith AM, Nie S (2012) Compact quantum dots for single-molecule imaging. J Vis Exp 68:e4236

    Google Scholar 

  25. Xie RG, Kolb U, Li JX et al (2005) Synthesis and characterization of highly luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. J Am Chem Soc 127(20):7480–7488

    Article  CAS  Google Scholar 

  26. Liu HY, Gao X (2011) Engineering monovalent quantum dot−antibody bioconjugates with a hybrid gel system. Bioconjug Chem 22:510–517

    Article  CAS  Google Scholar 

  27. Jasieniak J, Smith L, Jv E et al (2009) Re-examination of the size-dependent absorption properties of CdSe quantum dots. J Phys Chem C 113:19468–19474

    Article  CAS  Google Scholar 

  28. Palui G, Na HB, Mattoussi H (2012) Poly(ethylene glycol)-based multidentate oligomers for biocompatible semiconductor and gold nanocrystals. Langmuir 28:2761–2772

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Le, P., Chitoor, S., Tu, C., Lim, S.J., Smith, A.M. (2020). Compact Quantum Dots for Quantitative Cytology. In: Shrestha, B. (eds) Single Cell Metabolism. Methods in Molecular Biology, vol 2064. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9831-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9831-9_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9829-6

  • Online ISBN: 978-1-4939-9831-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics