Skip to main content

Determining mRNA Stability by Metabolic RNA Labeling and Chemical Nucleoside Conversion

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2062))

Abstract

The varying rates at which mRNAs decay are tightly coordinated with transcriptional changes to shape gene expression during development and disease. But currently available RNA sequencing approaches lack the temporal information to determine the relative contribution of RNA biogenesis, processing and turnover to the establishment of steady-state gene expression profiles.

Here, we describe a protocol that combines metabolic RNA labeling with chemical nucleoside conversion by thiol-linked alkylation of 4-thiouridine to determine RNA stability in cultured cells (SLAMseq). When coupled to cost-effective mRNA 3′ end sequencing approaches, SLAMseq determines the half-life of polyadenylated transcripts in a global and transcript-specific manner using untargeted or targeted cDNA library preparation protocols.

We provide a step-by-step instruction for time-resolved mRNA 3′ end sequencing, which augments traditional RNA-seq approaches to acquire the temporal resolution necessary to study the molecular principles that control gene expression.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ghosh S, Jacobson A (2010) RNA decay modulates gene expression and controls its fidelity. Wiley Interdiscip Rev RNA 1:351–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473:337–342

    Article  PubMed  Google Scholar 

  3. Russo J, Olivas WM (2015) Conditional regulation of Puf1p, Puf4p, and Puf5p activity alters YHB1 mRNA stability for a rapid response to toxic nitric oxide stress in yeast. Mol Biol Cell 26:1015–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Slavov N, Botstein D (2013) Decoupling nutrient signaling from growth rate causes aerobic glycolysis and deregulation of cell size and gene expression. Mol Biol Cell 24:157–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Asaoka-Taguchi M, Yamada M, Nakamura A, Hanyu K, Kobayashi S (1999) Maternal pumilio acts together with Nanos in germline development in drosophila embryos. Nat Cell Biol 1:431–437

    Article  CAS  PubMed  Google Scholar 

  6. Singer RH, Penman S (1972) Stability of HeLa cell mRNA in actinomycin. Nature 240:100–102

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Liu CL, Storey JD, Tibshirani RJ, Herschlag D, Brown PO (2002) Precision and functional specificity in mRNA decay. Proc Natl Acad Sci U S A 99:5860–5865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Haimovich G, Medina DA, Causse SZ, Garber M, Millán-Zambrano G, Barkai O, Chávez S, Pérez-Ortín JE, Darzacq X, Choder M (2013) Gene expression is circular: factors for mRNA degradation also Foster mRNA synthesis. Cell 153:1000–1011

    Article  CAS  PubMed  Google Scholar 

  9. Ross J (1995) mRNA stability in mammalian cells. Microbiol Rev 59:423–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Johnson TR, Rudin SD, Blossey BK, Ilan J (1991) Newly synthesized RNA: simultaneous measurement in intact cells of transcription rates and RNA stability of insulin-like growth factor I, actin, and albumin in growth hormone-stimulated hepatocytes. Proc Natl Acad Sci U S A 88:5287–5291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tani H, Akimitsu N (2012) Genome-wide technology for determining RNA stability in mammalian cells: historical perspective and recent advantages based on modified nucleotide labeling. RNA Biol 9:1233–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Riml C, Amort T, Rieder D, Gasser C, Lusser A, Micura R (2017) Osmium-mediated transformation of 4-thiouridine to cytidine as key to study RNA dynamics by sequencing. Angew Chem Int Ed 56:13479–13483

    Article  CAS  Google Scholar 

  13. Herzog VA, Reichholf B, Neumann T, Rescheneder P, Bhat P, Burkard TR, Wlotzka W, von Haeseler A, Zuber J, Ameres SL (2017) Thiol-linked alkylation of RNA to assess expression dynamics. Nat Methods 14:1198–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schofield JA, Duffy EE, Kiefer L, Sullivan MC, Simon MD (2018) TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding. Nat Methods 15:221–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Muhar M, Ebert A, Neumann T, Umkehrer C, Jude J, Wieshofer C, Rescheneder P, Lipp JJ, Herzog VA, Reichholf B, Cisneros DA, Hoffmann T, Schlapansky MF, Bhat P, von Haeseler A, Köcher T, Obenauf AC, Popow J, Ameres SL, Zuber J (2018) SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis. Science 360:800–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Matsushima W, Herzog VA, Neumann T, Gapp K, Zuber J, Ameres SL, Miska EA (2018) SLAM-ITseq: sequencing cell type-specific transcriptomes without cell sorting. Development 145:dev16464

    Google Scholar 

  17. Sharma U, Sun F, Conine CC, Reichholf B, Kukreja S, Herzog VA, Ameres SL, Rando OJ (2018) Small RNAs are trafficked from the epididymis to developing mammalian sperm. Dev Cell 46:481–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reichholf B, Herzog VA, Fasching N, Manzenreither RA, Sowemimo I, Ameres SL (2019) Time-resolved small RNA sequencing unravels the molecular principles of microRNA homeostasis. Mol Cell pii: S1097-2765(19)30474-5

    Google Scholar 

  19. Mayr C, Bartel DP (2009) Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138:673–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Elling U, Wimmer RA, Leibbrandt A, Burkard T, Michlits G, Leopoldi A, Micheler T, Abdeen D, Zhuk S, Aspalter IM, Handl C, Liebergesell J, Hubmann M, Husa A-M, Kinzer M, Schuller N, Wetzel E, van de Loo N, Martinez JAZ, Estoppey D, Riedl R, Yang F, Fu B, Dechat T, Ivics Z, Agu CA, Bell O, Blaas D, Gerhardt H, Hoepfner D, Stark A, Penninger JM (2017) A reversible haploid mouse embryonic stem cell biobank resource for functional genomics. Nature 550:114–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Neumann T, Herzog VA, Muhar M, von Haeseler A, Zuber J, Ameres SL, Rescheneder P (2019) Quantification of experimentally induced nucleotide conversions in high-throughput sequencing datasets. BMC Bioinformatics 20(1):258

    Google Scholar 

  22. Sedlazeck FJ, Rescheneder P, von Haeseler A (2013) NextGenMap: fast and accurate read mapping in highly polymorphic genomes. Bioinformatics 29:2790–2791

    Article  CAS  PubMed  Google Scholar 

  23. Spitzer J, Hafner M, Landthaler M, Ascano M, Farazi T, Wardle G, Nusbaum J, Khorshid M, Burger L, Zavolan M, Tuschl T (2014) PAR-CLIP (photoactivatable Ribonucleoside-enhanced crosslinking and immunoprecipitation): a step-by-step protocol to the transcriptome-wide identification of binding sites of RNA-binding proteins. Meth Enzymol 539:113–161

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Brian Reichholf (IMBA, Vienna Biocenter, Austria) and Tobias Neumann (IMP, Vienna Biocenter, Austria) for bioinformatics support. HTP sequencing was performed at the VBCF NGS Unit (www.vbcf.ac.at). This work was supported in part by the European Research Council grants ERC-StG-338252 and ERC-PoC-825710 to S.L.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan L. Ameres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Herzog, V.A., Fasching, N., Ameres, S.L. (2020). Determining mRNA Stability by Metabolic RNA Labeling and Chemical Nucleoside Conversion. In: LaCava, J., Vaňáčová, Š. (eds) The Eukaryotic RNA Exosome. Methods in Molecular Biology, vol 2062. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9822-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9822-7_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9821-0

  • Online ISBN: 978-1-4939-9822-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics