Skip to main content

Enzymatic Analysis of Reconstituted Archaeal Exosomes

  • Protocol
  • First Online:
The Eukaryotic RNA Exosome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2062))

Abstract

The archaeal exosome is a protein complex with phosphorolytic activity. It is built of a catalytically active hexameric ring containing the archaeal Rrp41 and Rrp42 proteins, and a heteromeric RNA-binding platform. The platform contains a heterotrimer of the archaeal Rrp4 and Csl4 proteins (which harbor S1 and KH or Zn-ribbon RNA binding domains), and comprises additional archaea-specific subunits. The latter are represented by the archaeal DnaG protein, which harbors a novel RNA-binding domain and tightly interacts with the majority of the exosome isoforms, and Nop5, known as a part of an rRNA methylating complex and found to associate with the archaeal exosome at late stationary phase. Although in the cell the archaeal exosome exists in different isoforms with heterotrimeric Rrp4-Csl4-caps, in vitro it is possible to reconstitute complexes with defined, homotrimeric caps and to study the impact of each RNA-binding subunit on exoribonucleolytic degradation and on polynucleotidylation of RNA. Here we describe procedures for reconstitution of isoforms of the Sulfolobus solfataricus exosome and for set-up of RNA degradation and polyadenylation assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D (1997) The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′-5′ exoribonucleases. Cell 91:457–466

    Article  CAS  PubMed  Google Scholar 

  2. Allmang C et al (1999) Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J 18:5399–5410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Houseley J, LaCava J, Tollervey D (2006) RNA-quality control by the exosome. Nat Rev Mol Cell Biol 7:529–539

    Article  CAS  PubMed  Google Scholar 

  4. Liu Q, Greimann JC, Lima CD (2006) Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127:1223–1237; Erratum in: Cell (2007) 131:188–189

    Article  CAS  PubMed  Google Scholar 

  5. Dziembowski A, Lorentzen E, Conti E, Séraphin B (2007) A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol 14:15–22

    Article  CAS  PubMed  Google Scholar 

  6. Schaeffer D et al (2009) The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities. Nat Struct Mol Biol 16:56–62

    Article  CAS  PubMed  Google Scholar 

  7. Koonin EV, Wolf YI, Aravind L (2001) Prediction of the archaeal exosome and its connections with the proteasome and the translation and transcription machineries by a comparative-genomic approach. Genome Res 11:240–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Evguenieva-Hackenberg E, Hou L, Glaeser S, Klug G (2014) Structure and function of the archaeal exosome. Wiley Interdiscip Rev RNA 5:623–635

    Article  CAS  PubMed  Google Scholar 

  9. Evguenieva-Hackenberg E, Walter P, Hochleitner E, Lottspeich F, Klug G (2003) An exosome-like complex in Sulfolobus solfataricus. EMBO Rep 4:889–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lorentzen E et al (2005) The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nat Struct Mol Biol 12:575–581

    Article  CAS  PubMed  Google Scholar 

  11. Büttner K, Wenig K, Hopfner KP (2005) Structural framework for the mechanism of archaeal exosomes in RNA processing. Mol Cell 20:461–471

    Article  PubMed  Google Scholar 

  12. Walter P et al (2006) Characterization of native and reconstituted exosome complexes from the hyperthermophilic archaeon Sulfolobus solfataricus. Mol Microbiol 62:1076–1089

    Article  CAS  PubMed  Google Scholar 

  13. Witharana C, Roppelt V, Lochnit G, Klug G, Evguenieva-Hackenberg E (2012) Heterogeneous complexes of the RNA exosome in Sulfolobus solfataricus. Biochimie 94:1578–1587

    Article  CAS  PubMed  Google Scholar 

  14. Ramos CR, Oliveira CL, Torriani IL, Oliveira CC (2006) The Pyrococcus exosome complex: structural and functional characterization. J Biol Chem 281:6751–6759

    Article  CAS  PubMed  Google Scholar 

  15. Navarro MV, Oliveira CC, Zanchin NI, Guimarães BG (2008) Insights into the mechanism of progressive RNA degradation by the archaeal exosome. J Biol Chem 283:14120–14131

    Article  CAS  PubMed  Google Scholar 

  16. Audin MJ, Wurm JP, Cvetkovic MA, Sprangers R (2016) The oligomeric architecture of the archaeal exosome is important for processive and efficient RNA degradation. Nucleic Acids Res 44:2962–2973

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lorentzen E, Dziembowski A, Lindner D, Seraphin B, Conti E (2007) RNA channelling by the archaeal exosome. EMBO Rep 8:470–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Evguenieva-Hackenberg E, Roppelt V, Finsterseifer P, Klug G (2008) Rrp4 and Csl4 are needed for efficient degradation but not for polyadenylation of synthetic and natural RNA by the archaeal exosome. Biochemistry 47:13158–13168

    Article  CAS  PubMed  Google Scholar 

  19. Luz JS et al (2010) Identification of archaeal proteins that affect the exosome function in vitro. BMC Biochem 11:22

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lu C, Ding F, Ke A (2010) Crystal structure of the S. solfataricus archaeal exosome reveals conformational flexibility in the RNA-binding ring. PLoS One 5:e8739

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cvetkovic MA, Wurm JP, Audin MJ, Schütz S, Sprangers R (2017) The Rrp4-exosome complex recruits and channels substrate RNA by a unique mechanism. Nat Chem Biol 13:522–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roppelt V, Klug G, Evguenieva-Hackenberg E (2010) The evolutionarily conserved subunits Rrp4 and Csl4 confer different substrate specificities to the archaeal exosome. FEBS Lett 584:2931–2936

    Article  CAS  PubMed  Google Scholar 

  23. Hou L, Klug G, Evguenieva-Hackenberg E (2013) The archaeal DnaG protein needs Csl4 for binding to the exosome and enhances its interaction with adenine-rich RNAs. RNA Biol 10:415–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hou L, Klug G, Evguenieva-Hackenberg E (2014) Archaeal DnaG contains a conserved N-terminal RNA-binding domain and enables tailing of rRNA by the exosome. Nucleic Acids Res 42:12691–12706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Märtens B et al (2017) The SmAP1/2 proteins of the crenarchaeon Sulfolobus solfataricus interact with the exosome and stimulate A-rich tailing of transcripts. Nucleic Acids Res 45:7938–7949

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gauernack AS et al (2017) Nop5 interacts with the archaeal RNA exosome. FEBS Lett 591:4039–4048

    Article  CAS  PubMed  Google Scholar 

  27. Portnoy V et al (2005) RNA polyadenylation in archaea: not observed in Haloferax while the exosome polynucleotidylates RNA in Sulfolobus. EMBO Rep 6:1188–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Portnoy V, Schuster G (2006) RNA polyadenylation and degradation in different Archaea; roles of the exosome and RNase R. Nucleic Acids Res 34:5923–5931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Slomovic S, Portnoy V, Yehudai-Resheff S, Bronshtein E, Schuster G (2008) Polynucleotide phosphorylase and the archaeal exosome as poly(A)-polymerases. Biochim Biophys Acta 1779:247–1755

    Article  CAS  PubMed  Google Scholar 

  30. Mohanty BK, Kushner SR (2000) Polynucleotide phosphorylase functions both as a 3′ right-arrow 5′ exonuclease and a poly(A) polymerase in Escherichia coli. Proc Natl Acad Sci U S A 97:11966–11971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Andrade JM, Hajnsdorf E, Régnier P, Arraiano CM (2009) The poly(A)-dependent degradation pathway of rpsO mRNA is primarily mediated by RNase R. RNA 15:316–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mohanty BK, Kushner SR (2011) Bacterial/archaeal/organellar polyadenylation. Wiley Interdiscip Rev 2:256–276

    Article  CAS  Google Scholar 

  33. Lorentzen E, Conti E (2008) Expression, reconstitution, and structure of an archaeal RNA degrading exosome. Methods Enzymol 447:417–435

    Article  CAS  PubMed  Google Scholar 

  34. Zuo Z, Rodgers CJ, Mikheikin AL, Trakselis MA (2010) Characterization of a functional DnaG-type primase in archaea: implications for a dual-primase system. J Mol Biol 397:664–676

    Article  CAS  PubMed  Google Scholar 

  35. Evguenieva-Hackenberg E, Wagner S, Klug G (2008) In vivo and in vitro studies of RNA degrading activities in Archaea. Methods Enzymol 447:381–416

    Article  CAS  PubMed  Google Scholar 

  36. Roppelt V (2011) Die Untersuchung der physiologischen Rolle der Exosom-Untereinheiten Rrp4, Csl4 und DnaG aus Sulfolobus solfataricus. Dissertation, University of Giessen, Germany

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elena Evguenieva-Hackenberg or Gabriele Klug .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Evguenieva-Hackenberg, E., Gauernack, A.S., Hou, L., Klug, G. (2020). Enzymatic Analysis of Reconstituted Archaeal Exosomes. In: LaCava, J., Vaňáčová, Š. (eds) The Eukaryotic RNA Exosome. Methods in Molecular Biology, vol 2062. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9822-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9822-7_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9821-0

  • Online ISBN: 978-1-4939-9822-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics