Skip to main content

Reconstitution of S. cerevisiae RNA Exosome Complexes Using Recombinantly Expressed Proteins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2062))

Abstract

3′ to 5′ RNA degradation is primarily catalyzed by the RNA exosome subunits Dis3 and Rrp6 in the nucleus of Saccharomyces cerevisiae. These enzymes form a complex with the nine-subunit noncatalytic core (Exo9) to carry out their functions in vivo. Protein cofactors Rrp47, Mpp6, and the Mtr4 RNA helicase also assist the complex by modulating its activities and/or recruiting it to specific RNAs for processing or degradation. Here we present our preferred strategy for reconstituting RNA exosomes from S. cerevisiae using purified, recombinantly expressed components.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kilchert C, Wittmann S, Vasiljeva L (2016) The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol 17:227–239

    Article  CAS  PubMed  Google Scholar 

  2. Łabno A, Tomecki R, Dziembowski A (2016) Cytoplasmic RNA decay pathways - enzymes and mechanisms. Biochim Biophys Acta 1863:3125–3147

    Article  PubMed  Google Scholar 

  3. Houseley J, Tollervey D (2009) The many pathways of RNA degradation. Cell 136:763–776

    Article  CAS  PubMed  Google Scholar 

  4. Zinder JC, Lima CD (2017) Targeting RNA for processing or destruction by the eukaryotic RNA exosome and its cofactors. Genes Dev 31:88–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. LaCava J, Houseley J, Saveanu C et al (2005) RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121:713–724

    Article  CAS  PubMed  Google Scholar 

  6. Wyers F, Rougemaille M, Badis G et al (2005) Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121:725–737

    Article  CAS  PubMed  Google Scholar 

  7. Vanacova S, Wolf J, Martin G et al (2005) A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol 3:e189–e112

    Article  PubMed  Google Scholar 

  8. Liu Q, Greimann JC, Lima CD (2006) Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127:1223–1237

    Article  CAS  PubMed  Google Scholar 

  9. Bonneau F, Basquin J, Ebert J et al (2009) The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation. Cell 139:547–559

    Article  CAS  PubMed  Google Scholar 

  10. Wasmuth EV, Lima CD (2012) Exo- and endoribonucleolytic activities of yeast cytoplasmic and nuclear RNA exosomes are dependent on the noncatalytic core and central channel. Mol Cell 48:133–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Makino DL, Baumgärtner M, Conti E (2013) Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature 495:70–75

    Article  CAS  PubMed  Google Scholar 

  12. Wasmuth EV, Januszyk K, Lima CD (2014) Structure of an Rrp6-RNA exosome complex bound to poly(A) RNA. Nature 511:435–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wasmuth EV, Zinder JC, Zattas D et al (2017) Structure and reconstitution of yeast Mpp6-nuclear exosome complexes reveals that Mpp6 stimulates RNA decay and recruits the Mtr4 helicase. elife 6:213

    Article  Google Scholar 

  14. Schuch B, Feigenbutz M, Makino DL et al (2014) The exosome-binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase. EMBO J 33:2829–2846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Falk S, Bonneau F, Ebert J et al (2017) Mpp6 incorporation in the nuclear exosome contributes to RNA channeling through the Mtr4 helicase. Cell Rep 20:2279–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weick EM, Puno MR, Januszyck K et al Helicase-dependent RNA decay illuminated by a cryo-EM structure of a human nuclear RNA exosome-MTR4 complex. Cell 173(7):1663–1667

    Google Scholar 

  17. Schuller JM, Falk S, Fromm L et al (2018) Structure of the nuclear exosome captured on a maturing preribosome. Science 360:219–222

    Article  CAS  PubMed  Google Scholar 

  18. Makino DL, Schuch B, Stegmann E et al (2015) RNA degradation paths in a 12-subunit nuclear exosome complex. Nature 524:54–58

    Article  CAS  PubMed  Google Scholar 

  19. Greimann JC, Lima CD (2008) Reconstitution of RNA exosomes from human and Saccharomyces cerevisiae: cloning, expression, purification, and activity assays. Methods Enzymol 448:185–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marblestone JG, Edavettal SC, Lim Y et al (2006) Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein Sci 15:182–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mossessova E, Lima CD (2000) Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol Cell 5:865–876

    Article  CAS  PubMed  Google Scholar 

  22. Wasmuth EV, Lima CD (2017) The Rrp6 C-terminal domain binds RNA and activates the nuclear RNA exosome. Nucleic Acids Res 45:846–860

    Article  CAS  PubMed  Google Scholar 

  23. Zinder JC, Wasmuth EV, Lima CD (2016) Nuclear RNA exosome at 3.1 Å reveals substrate specificities, RNA paths, and allosteric inhibition of Rrp44/Dis3. Mol Cell 64:734–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stead JA, Costello JL, Livingstone MJ, Mitchell P (2007) The PMC2NT domain of the catalytic exosome subunit Rrp6p provides the interface for binding with its cofactor Rrp47p, a nucleic acid-binding protein. Nucleic Acids Res 35:5556–5567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dedic E, Seweryn P, Jonstrup AT et al (2014) Structural analysis of the yeast exosome Rrp6p-Rrp47p complex by small-angle X-ray scattering. Biochem Biophys Res Commun 450:634–640

    Article  CAS  PubMed  Google Scholar 

  26. Feigenbutz M, Garland W, Turner M, Mitchell P (2013) The exosome cofactor Rrp47 is critical for the stability and normal expression of its associated exoribonuclease Rrp6 in Saccharomyces cerevisiae. PLoS One 8:e80752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lebreton A, Tomecki R, Dziembowski A, Séraphin B (2008) Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature 456:993–996

    Article  CAS  PubMed  Google Scholar 

  28. Wang H-W, Wang J, Ding F et al (2007) Architecture of the yeast Rrp44 exosome complex suggests routes of RNA recruitment for 3′ end processing. Proc Natl Acad Sci U S A 104:16844–16849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu J-J, Niu C-Y, Wu Y et al (2016) CryoEM structure of yeast cytoplasmic exosome complex. Cell Res 26:822–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kowalinski E, Kögel A, Ebert J et al (2016) Structure of a cytoplasmic 11-subunit RNA exosome complex. Mol Cell 63:125–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by GM065872 and GM118080 (NIH/NIGMS, C.D.L) and P30CA008748 (NIH/National Cancer Institute). The content is the authors’ responsibility and does not represent the official views of the NIH. C.D.L is a Howard Hughes Medical Institute Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher D. Lima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zinder, J.C., Lima, C.D. (2020). Reconstitution of S. cerevisiae RNA Exosome Complexes Using Recombinantly Expressed Proteins. In: LaCava, J., Vaňáčová, Š. (eds) The Eukaryotic RNA Exosome. Methods in Molecular Biology, vol 2062. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9822-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9822-7_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9821-0

  • Online ISBN: 978-1-4939-9822-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics