Skip to main content

The RNA Exosome and Human Disease

  • Protocol
  • First Online:
The Eukaryotic RNA Exosome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2062))

Abstract

The evolutionarily conserved RNA exosome is a multisubunit ribonuclease complex that processes and/or degrades numerous RNAs. Recently, mutations in genes encoding both structural and catalytic subunits of the RNA exosome have been linked to human disease. Mutations in the structural exosome gene EXOSC2 cause a distinct syndrome that includes retinitis pigmentosa, hearing loss, and mild intellectual disability. In contrast, mutations in the structural exosome genes EXOSC3 and EXOSC8 cause pontocerebellar hypoplasia type 1b (PCH1b) and type 1c (PCH1c), respectively, which are related autosomal recessive, neurodegenerative diseases. In addition, mutations in the structural exosome gene EXOSC9 cause a PCH-like disease with cerebellar atrophy and spinal motor neuronopathy. Finally, mutations in the catalytic exosome gene DIS3 have been linked to multiple myeloma, a neoplasm of plasma B cells. How mutations in these RNA exosome genes lead to distinct, tissue-specific diseases is not currently well understood. In this chapter, we examine the role of the RNA exosome complex in human disease and discuss the mechanisms by which mutations in different exosome subunit genes could impair RNA exosome function and give rise to diverse diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 01 December 2020

    A correction has been published.

References

  1. Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D (1997) The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′ → 5′ exoribonucleases. Cell 91(4):457–466

    CAS  PubMed  Google Scholar 

  2. Allmang C, Petfalski E, Podtelejnikov A, Mann M, Tollervey D, Mitchell P (1999) The yeast exosome and human PM-Scl are related complexes of 3′ → 5′ exonucleases. Genes Dev 13(16):2148–2158

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Schilders G, Raijmakers R, Raats JM, Pruijn GJ (2005) MPP6 is an exosome-associated RNA-binding protein involved in 5.8S rRNA maturation. Nucleic Acids Res 33(21):6795–6804

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu Q, Greimann JC, Lima CD (2006) Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127(6):1223–1237

    CAS  PubMed  Google Scholar 

  5. Makino DL, Baumgartner M, Conti E (2013) Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature 495(7439):70–75

    CAS  PubMed  Google Scholar 

  6. Dziembowski A, Lorentzen E, Conti E, Seraphin B (2007) A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol 14(1):15–22

    CAS  PubMed  Google Scholar 

  7. Weick EM, Puno MR, Januszyk K, Zinder JC, DiMattia MA, Lima CD (2018) Helicase-Dependent RNA Decay Illuminated by a Cryo-EM Structure of a Human Nuclear RNA Exosome-MTR4 Complex. Cell 173(7):1663–1677 e1621

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wan J, Yourshaw M, Mamsa H, Rudnik-Schoneborn S, Menezes MP, Hong JE, Leong DW, Senderek J, Salman MS, Chitayat D, Seeman P, von Moers A, Graul-Neumann L, Kornberg AJ, Castro-Gago M, Sobrido MJ, Sanefuji M, Shieh PB, Salamon N, Kim RC, Vinters HV, Chen Z, Zerres K, Ryan MM, Nelson SF, Jen JC (2012) Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration. Nat Genet 44(6):704–708

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Di Donato N, Neuhann T, Kahlert AK, Klink B, Hackmann K, Neuhann I, Novotna B, Schallner J, Krause C, Glass IA, Parnell SE, Benet-Pages A, Nissen AM, Berger W, Altmuller J, Thiele H, Weber BH, Schrock E, Dobyns WB, Bier A, Rump A (2016) Mutations in EXOSC2 are associated with a novel syndrome characterised by retinitis pigmentosa, progressive hearing loss, premature ageing, short stature, mild intellectual disability and distinctive gestalt. J Med Genet 53(6):419–425

    PubMed  Google Scholar 

  10. Boczonadi V, Muller JS, Pyle A, Munkley J, Dor T, Quartararo J, Ferrero I, Karcagi V, Giunta M, Polvikoski T, Birchall D, Princzinger A, Cinnamon Y, Lutzkendorf S, Piko H, Reza M, Florez L, Santibanez-Koref M, Griffin H, Schuelke M, Elpeleg O, Kalaydjieva L, Lochmuller H, Elliott DJ, Chinnery PF, Edvardson S, Horvath R (2014) EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia. Nat Commun 5:4287

    CAS  PubMed  Google Scholar 

  11. Burns DT, Donkervoort S, Muller JS, Knierim E, Bharucha-Goebel D, Faqeih EA, Bell SK, AlFaifi AY, Monies D, Millan F, Retterer K, Dyack S, MacKay S, Morales-Gonzalez S, Giunta M, Munro B, Hudson G, Scavina M, Baker L, Massini TC, Lek M, Hu Y, Ezzo D, AlKuraya FS, Kang PB, Griffin H, Foley AR, Schuelke M, Horvath R, Bonnemann CG (2018) Variants in EXOSC9 disrupt the RNA exosome and result in cerebellar atrophy with spinal motor neuronopathy. Am J Hum Genet 102(5):858–873

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC, Harview CL, Brunet JP, Ahmann GJ, Adli M, Anderson KC, Ardlie KG, Auclair D, Baker A, Bergsagel PL, Bernstein BE, Drier Y, Fonseca R, Gabriel SB, Hofmeister CC, Jagannath S, Jakubowiak AJ, Krishnan A, Levy J, Liefeld T, Lonial S, Mahan S, Mfuko B, Monti S, Perkins LM, Onofrio R, Pugh TJ, Rajkumar SV, Ramos AH, Siegel DS, Sivachenko A, Stewart AK, Trudel S, Vij R, Voet D, Winckler W, Zimmerman T, Carpten J, Trent J, Hahn WC, Garraway LA, Meyerson M, Lander ES, Getz G, Golub TR (2011) Initial genome sequencing and analysis of multiple myeloma. Nature 471(7339):467–472

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Schuller JM, Falk S, Fromm L, Hurt E, Conti E (2018) Structure of the nuclear exosome captured on a maturing preribosome. Science 360(6385):219–222

    CAS  PubMed  Google Scholar 

  14. Makino DL, Schuch B, Stegmann E, Baumgartner M, Basquin C, Conti E (2015) RNA degradation paths in a 12-subunit nuclear exosome complex. Nature 524(7563):54–58

    CAS  PubMed  Google Scholar 

  15. Zinder JC, Wasmuth EV, Lima CD (2016) Nuclear RNA exosome at 3.1 A reveals substrate specificities, RNA paths, and allosteric inhibition of Rrp44/Dis3. Mol Cell 64(4):734–745

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Han J, van Hoof A (2016) The RNA exosome channeling and direct access conformations have distinct in vivo functions. Cell Rep 16(12):3348–3358

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu JJ, Bratkowski MA, Liu X, Niu CY, Ke A, Wang HW (2014) Visualization of distinct substrate-recruitment pathways in the yeast exosome by EM. Nat Struct Mol Biol 21(1):95–102

    CAS  PubMed  Google Scholar 

  18. Morton DJ, Kuiper EG, Jones SK, Leung SW, Corbett AH, Fasken MB (2018) The RNA exosome and RNA exosome-linked disease. RNA 24(2):127–142

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mitchell P, Petfalski E, Tollervey D (1996) The 3′ end of yeast 5.8S rRNA is generated by an exonuclease processing mechanism. Genes Dev 10(4):502–513

    CAS  PubMed  Google Scholar 

  20. Andrulis ED, Werner J, Nazarian A, Erdjument-Bromage H, Tempst P, Lis JT (2002) The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila. Nature 420(6917):837–841

    CAS  PubMed  Google Scholar 

  21. Malet H, Topf M, Clare DK, Ebert J, Bonneau F, Basquin J, Drazkowska K, Tomecki R, Dziembowski A, Conti E, Saibil HR, Lorentzen E (2010) RNA channelling by the eukaryotic exosome. EMBO Rep 11(12):936–942

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lebreton A, Tomecki R, Dziembowski A, Seraphin B (2008) Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature 456(7224):993–996

    CAS  PubMed  Google Scholar 

  23. Schaeffer D, Tsanova B, Barbas A, Reis FP, Dastidar EG, Sanchez-Rotunno M, Arraiano CM, van Hoof A (2009) The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities. Nat Struct Mol Biol 16(1):56–62

    CAS  PubMed  Google Scholar 

  24. Schneider C, Leung E, Brown J, Tollervey D (2009) The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome. Nucleic Acids Res 37(4):1127–1140

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wasmuth EV, Januszyk K, Lima CD (2014) Structure of an Rrp6-RNA exosome complex bound to poly(A) RNA. Nature 511(7510):435–439

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kiss DL, Andrulis ED (2010) Genome-wide analysis reveals distinct substrate specificities of Rrp6, Dis3, and core exosome subunits. RNA 16(4):781–791

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lorentzen E, Dziembowski A, Lindner D, Seraphin B, Conti E (2007) RNA channelling by the archaeal exosome. EMBO Rep 8(5):470–476

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gerlach P, Schuller JM, Bonneau F, Basquin J, Reichelt P, Falk S, Conti E (2018) Distinct and evolutionary conserved structural features of the human nuclear exosome complex. Elife 7. https://doi.org/10.7554/eLife.38686

  29. Wasmuth EV, Zinder JC, Zattas D, Das M, Lima CD (2017) Structure and reconstitution of yeast Mpp6-nuclear exosome complexes reveals that Mpp6 stimulates RNA decay and recruits the Mtr4 helicase. elife 6:213. https://doi.org/10.7554/eLife.29062

  30. Falk S, Bonneau F, Ebert J, Kogel A, Conti E (2017) Mpp6 incorporation in the nuclear exosome contributes to RNA channeling through the Mtr4 helicase. Cell Rep 20(10):2279–2286

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bonneau F, Basquin J, Ebert J, Lorentzen E, Conti E (2009) The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation. Cell 139(3):547–559

    CAS  PubMed  Google Scholar 

  32. Schaeffer D, Clark A, Klauer AA, Tsanova B, van Hoof A (2010) Functions of the cytoplasmic exosome. In: Jensen TH (ed) RNA exosome. Landes Bioscience, New York

    Google Scholar 

  33. Butler JS, Mitchell P (2010) Rrp6, Rrp47 and cofactors of the nuclear exosome. Adv Exp Med Biol 702:91–104

    CAS  PubMed  Google Scholar 

  34. Schneider C, Tollervey D (2013) Threading the barrel of the RNA exosome. Trends Biochem Sci 38(10):485–493

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Houseley J, LaCava J, Tollervey D (2006) RNA-quality control by the exosome. Nat Rev Mol Cell Biol 7(7):529–539

    CAS  PubMed  Google Scholar 

  36. Kilchert C, Wittmann S, Vasiljeva L (2016) The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol 17(4):227–239

    CAS  PubMed  Google Scholar 

  37. Allmang C, Kufel J, Chanfreau G, Mitchell P, Petfalski E, Tollervey D (1999) Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J 18(19):5399–5410

    CAS  PubMed  PubMed Central  Google Scholar 

  38. van Hoof A, Lennertz P, Parker R (2000) Yeast exosome mutants accumulate 3′-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs. Mol Cell Biol 20(2):441–452

    PubMed  PubMed Central  Google Scholar 

  39. Wyers F, Rougemaille M, Badis G, Rousselle JC, Dufour ME, Boulay J, Regnault B, Devaux F, Namane A, Seraphin B, Libri D, Jacquier A (2005) Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121(5):725–737

    CAS  PubMed  Google Scholar 

  40. Preker P, Nielsen J, Kammler S, Lykke-Andersen S, Christensen MS, Mapendano CK, Schierup MH, Jensen TH (2008) RNA exosome depletion reveals transcription upstream of active human promoters. Science 322(5909):1851–1854

    CAS  PubMed  Google Scholar 

  41. Pefanis E, Wang J, Rothschild G, Lim J, Chao J, Rabadan R, Economides AN, Basu U (2014) Noncoding RNA transcription targets AID to divergently transcribed loci in B cells. Nature 514(7522):389–393

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gudipati RK, Xu Z, Lebreton A, Seraphin B, Steinmetz LM, Jacquier A, Libri D (2012) Extensive degradation of RNA precursors by the exosome in wild-type cells. Mol Cell 48(3):409–421

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schneider C, Kudla G, Wlotzka W, Tuck A, Tollervey D (2012) Transcriptome-wide analysis of exosome targets. Mol Cell 48(3):422–433

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Burkard KT, Butler JS (2000) A nuclear 3′-5′ exonuclease involved in mRNA degradation interacts with Poly(A) polymerase and the hnRNA protein Npl3p. Mol Cell Biol 20(2):604–616

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Allmang C, Mitchell P, Petfalski E, Tollervey D (2000) Degradation of ribosomal RNA precursors by the exosome. Nucleic Acids Res 28(8):1684–1691

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bousquet-Antonelli C, Presutti C, Tollervey D (2000) Identification of a regulated pathway for nuclear pre-mRNA turnover. Cell 102(6):765–775

    CAS  PubMed  Google Scholar 

  47. Hilleren P, McCarthy T, Rosbash M, Parker R, Jensen TH (2001) Quality control of mRNA 3′-end processing is linked to the nuclear exosome. Nature 413(6855):538–542

    CAS  PubMed  Google Scholar 

  48. Torchet C, Bousquet-Antonelli C, Milligan L, Thompson E, Kufel J, Tollervey D (2002) Processing of 3′-extended read-through transcripts by the exosome can generate functional mRNAs. Mol Cell 9(6):1285–1296

    CAS  PubMed  Google Scholar 

  49. Kadaba S, Krueger A, Trice T, Krecic AM, Hinnebusch AG, Anderson J (2004) Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. Genes Dev 18(11):1227–1240. https://doi.org/10.1101/gad.1183804

  50. Schmidt K, Butler JS (2013) Nuclear RNA surveillance: role of TRAMP in controlling exosome specificity. Wiley Interdiscip Rev RNA 4(2):217–231

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zinder JC, Lima CD (2017) Targeting RNA for processing or destruction by the eukaryotic RNA exosome and its cofactors. Genes Dev 31(2):88–100

    CAS  PubMed  PubMed Central  Google Scholar 

  52. LaCava J, Houseley J, Saveanu C, Petfalski E, Thompson E, Jacquier A, Tollervey D (2005) RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121(5):713–724

    CAS  PubMed  Google Scholar 

  53. Vanacova S, Wolf J, Martin G, Blank D, Dettwiler S, Friedlein A, Langen H, Keith G, Keller W (2005) A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol 3(6):e189

    PubMed  Google Scholar 

  54. Lubas M, Christensen MS, Kristiansen MS, Domanski M, Falkenby LG, Lykke-Andersen S, Andersen JS, Dziembowski A, Jensen TH (2011) Interaction profiling identifies the human nuclear exosome targeting complex. Mol Cell 43(4):624–637

    CAS  PubMed  Google Scholar 

  55. Fasken MB, Leung SW, Banerjee A, Kodani MO, Chavez R, Bowman EA, Purohit MK, Rubinson ME, Rubinson EH, Corbett AH (2011) Air1 zinc knuckles 4 and 5 and a conserved IWRXY motif are critical for the function and integrity of the Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP) RNA quality control complex. J Biol Chem 286(43):37429–37445

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Milligan L, Decourty L, Saveanu C, Rappsilber J, Ceulemans H, Jacquier A, Tollervey D (2008) A yeast exosome cofactor, Mpp6, functions in RNA surveillance and in the degradation of noncoding RNA transcripts. Mol Cell Biol 28(17):5446–5457

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mitchell P, Petfalski E, Houalla R, Podtelejnikov A, Mann M, Tollervey D (2003) Rrp47p is an exosome-associated protein required for the 3′ processing of stable RNAs. Mol Cell Biol 23(19):6982–6992

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Schilders G, van Dijk E, Pruijn GJ (2007) C1D and hMtr4p associate with the human exosome subunit PM/Scl-100 and are involved in pre-rRNA processing. Nucleic Acids Res 35(8):2564–2572

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Vasiljeva L, Buratowski S (2006) Nrd1 interacts with the nuclear exosome for 3' processing of RNA polymerase II transcripts. Mol Cell 21(2):239–248

    CAS  PubMed  Google Scholar 

  60. Richard P, Feng S, Manley JL (2013) A SUMO-dependent interaction between Senataxin and the exosome, disrupted in the neurodegenerative disease AOA2, targets the exosome to sites of transcription-induced DNA damage. Genes Dev 27(20):2227–2232

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Anderson JS, Parker RP (1998) The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. EMBO J 17(5):1497–1506

    CAS  PubMed  PubMed Central  Google Scholar 

  62. van Hoof A, Staples RR, Baker RE, Parker R (2000) Function of the ski4p (Csl4p) and Ski7p proteins in 3′-to-5′ degradation of mRNA. Mol Cell Biol 20(21):8230–8243

    PubMed  PubMed Central  Google Scholar 

  63. Kowalinski E, Kogel A, Ebert J, Reichelt P, Stegmann E, Habermann B, Conti E (2016) Structure of a cytoplasmic 11-subunit RNA exosome complex. Mol Cell 63(1):125–134

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Johnson SJ, Jackson RN (2013) Ski2-like RNA helicase structures: common themes and complex assemblies. RNA Biol 10(1):33–43

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Giunta M, Edvardson S, Xu Y, Schuelke M, Gomez-Duran A, Boczonadi V, Elpeleg O, Muller JS, Horvath R (2016) Altered RNA metabolism due to a homozygous RBM7 mutation in a patient with spinal motor neuropathy. Hum Mol Genet 25(14):2985–2996

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Fabre A, Charroux B, Martinez-Vinson C, Roquelaure B, Odul E, Sayar E, Smith H, Colomb V, Andre N, Hugot JP, Goulet O, Lacoste C, Sarles J, Royet J, Levy N, Badens C (2012) SKIV2L mutations cause syndromic diarrhea, or trichohepatoenteric syndrome. Am J Hum Genet 90(4):689–692

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hartley JL, Zachos NC, Dawood B, Donowitz M, Forman J, Pollitt RJ, Morgan NV, Tee L, Gissen P, Kahr WH, Knisely AS, Watson S, Chitayat D, Booth IW, Protheroe S, Murphy S, de Vries E, Kelly DA, Maher ER (2010) Mutations in TTC37 cause trichohepatoenteric syndrome (phenotypic diarrhea of infancy). Gastroenterology 138(7):2388–2398, 2398 e2381-2382

    CAS  PubMed  Google Scholar 

  68. Briggs MW, Burkard KT, Butler JS (1998) Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3′ end formation. J Biol Chem 273(21):13255–13263

    CAS  PubMed  Google Scholar 

  69. Kinoshita N, Goebl M, Yanagida M (1991) The fission yeast dis3+ gene encodes a 110-kDa essential protein implicated in mitotic control. Mol Cell Biol 11(12):5839–5847

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim DU, Hayles J, Kim D, Wood V, Park HO, Won M, Yoo HS, Duhig T, Nam M, Palmer G, Han S, Jeffery L, Baek ST, Lee H, Shim YS, Lee M, Kim L, Heo KS, Noh EJ, Lee AR, Jang YJ, Chung KS, Choi SJ, Park JY, Park Y, Kim HM, Park SK, Park HJ, Kang EJ, Kim HB, Kang HS, Park HM, Kim K, Song K, Song KB, Nurse P, Hoe KL (2010) Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 28(6):617–623

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hou D, Ruiz M, Andrulis ED (2012) The ribonuclease Dis3 is an essential regulator of the developmental transcriptome. BMC Genomics 13:359

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lim SJ, Boyle PJ, Chinen M, Dale RK, Lei EP (2013) Genome-wide localization of exosome components to active promoters and chromatin insulators in Drosophila. Nucleic Acids Res 41(5):2963–2980

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Rudnik-Schöneborn S, Senderek J, Jen JC, Houge G, Seeman P, Puchmajerova A, Graul-Neumann L, Seidel U, Korinthenberg R, Kirschner J, Seeger J, Ryan MM, Muntoni F, Steinlin M, Sztriha L, Colomer J, Hubner C, Brockmann K, Van Maldergem L, Schiff M, Holzinger A, Barth P, Reardon W, Yourshaw M, Nelson SF, Eggermann T, Zerres K (2013) Pontocerebellar hypoplasia type 1: clinical spectrum and relevance of EXOSC3 mutations. Neurology 80(5):438–446

    PubMed  PubMed Central  Google Scholar 

  74. Eggens VR, Barth PG, Niermeijer JM, Berg JN, Darin N, Dixit A, Fluss J, Foulds N, Fowler D, Hortobagyi T, Jacques T, King MD, Makrythanasis P, Mate A, Nicoll JA, O'Rourke D, Price S, Williams AN, Wilson L, Suri M, Sztriha L, Dijns-de Wissel MB, van Meegen MT, van Ruissen F, Aronica E, Troost D, Majoie CB, Marquering HA, Poll-The BT, Baas F (2014) EXOSC3 mutations in pontocerebellar hypoplasia type 1: novel mutations and genotype-phenotype correlations. Orphanet J Rare Dis 9(1):23

    PubMed  PubMed Central  Google Scholar 

  75. Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D, Sougnez C, Knoechel B, Gould J, Saksena G, Cibulskis K, McKenna A, Chapman MA, Straussman R, Levy J, Perkins LM, Keats JJ, Schumacher SE, Rosenberg M, Multiple Myeloma Research Consortium, Getz G, Golub TR (2014) Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell 25(1):91–101

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Weissbach S, Langer C, Puppe B, Nedeva T, Bach E, Kull M, Bargou R, Einsele H, Rosenwald A, Knop S, Leich E (2015) The molecular spectrum and clinical impact of DIS3 mutations in multiple myeloma. Br J Haematol 169(1):57–70

    CAS  PubMed  Google Scholar 

  77. Walker BA, Boyle EM, Wardell CP, Murison A, Begum DB, Dahir NM, Proszek PZ, Johnson DC, Kaiser MF, Melchor L, Aronson LI, Scales M, Pawlyn C, Mirabella F, Jones JR, Brioli A, Mikulasova A, Cairns DA, Gregory WM, Quartilho A, Drayson MT, Russell N, Cook G, Jackson GH, Leleu X, Davies FE, Morgan GJ (2015) Mutational spectrum, copy number changes, and outcome: results of a sequencing study of patients with newly diagnosed myeloma. J Clin Oncol 33(33):3911–3920

    CAS  PubMed  Google Scholar 

  78. Lionetti M, Barbieri M, Todoerti K, Agnelli L, Fabris S, Tonon G, Segalla S, Cifola I, Pinatel E, Tassone P, Musto P, Baldini L, Neri A (2015) A compendium of DIS3 mutations and associated transcriptional signatures in plasma cell dyscrasias. Oncotarget 6(28):26129–26141

    PubMed  PubMed Central  Google Scholar 

  79. Zanni G, Scotton C, Passarelli C, Fang M, Barresi S, Dallapiccola B, Wu B, Gualandi F, Ferlini A, Bertini E, Wei W (2013) Exome sequencing in a family with intellectual disability, early onset spasticity, and cerebellar atrophy detects a novel mutation in EXOSC3. Neurogenetics 14(3-4):247–250

    CAS  PubMed  Google Scholar 

  80. Halevy A, Lerer I, Cohen R, Kornreich L, Shuper A, Gamliel M, Zimerman BE, Korabi I, Meiner V, Straussberg R, Lossos A (2014) Novel EXOSC3 mutation causes complicated hereditary spastic paraplegia. J Neurol 261(11):2165–2169

    CAS  PubMed  Google Scholar 

  81. Oddone A, Lorentzen E, Basquin J, Gasch A, Rybin V, Conti E, Sattler M (2007) Structural and biochemical characterization of the yeast exosome component Rrp40. EMBO Rep 8(1):63–69

    CAS  PubMed  Google Scholar 

  82. Walker BA, Wardell CP, Melchor L, Hulkki S, Potter NE, Johnson DC, Fenwick K, Kozarewa I, Gonzalez D, Lord CJ, Ashworth A, Davies FE, Morgan GJ (2012) Intraclonal heterogeneity and distinct molecular mechanisms characterize the development of t(4;14) and t(11;14) myeloma. Blood 120(5):1077–1086

    CAS  PubMed  Google Scholar 

  83. Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I, Dawson KJ, Iorio F, Nik-Zainal S, Bignell GR, Hinton JW, Li Y, Tubio JM, McLaren S, S OM, Butler AP, Teague JW, Mudie L, Anderson E, Rashid N, Tai YT, Shammas MA, Sperling AS, Fulciniti M, Richardson PG, Parmigiani G, Magrangeas F, Minvielle S, Moreau P, Attal M, Facon T, Futreal PA, Anderson KC, Campbell PJ, Munshi NC (2014) Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun 5:2997

    PubMed  Google Scholar 

  84. Leich E, Weissbach S, Klein HU, Grieb T, Pischimarov J, Stuhmer T, Chatterjee M, Steinbrunn T, Langer C, Eilers M, Knop S, Einsele H, Bargou R, Rosenwald A (2013) Multiple myeloma is affected by multiple and heterogeneous somatic mutations in adhesion- and receptor tyrosine kinase signaling molecules. Blood Cancer J 3:e102

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Melchor L, Brioli A, Wardell CP, Murison A, Potter NE, Kaiser MF, Fryer RA, Johnson DC, Begum DB, Hulkki Wilson S, Vijayaraghavan G, Titley I, Cavo M, Davies FE, Walker BA, Morgan GJ (2014) Single-cell genetic analysis reveals the composition of initiating clones and phylogenetic patterns of branching and parallel evolution in myeloma. Leukemia 28(8):1705–1715

    CAS  PubMed  Google Scholar 

  86. Kortum KM, Langer C, Monge J, Bruins L, Zhu YX, Shi CX, Jedlowski P, Egan JB, Ojha J, Bullinger L, Kull M, Ahmann G, Rasche L, Knop S, Fonseca R, Einsele H, Stewart AK, Braggio E (2015) Longitudinal analysis of 25 sequential sample-pairs using a custom multiple myeloma mutation sequencing panel (M(3)P). Ann Hematol 94(7):1205–1211

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ryu D, Kim HJ, Joung JG, Lee HO, Bae JS, Kim SJ, Kim H, Park WY, Kim K (2016) Comprehensive genomic profiling of IgM multiple myeloma identifies IRF4 as a prognostic marker. Oncotarget 7(30):47127–47133

    PubMed  PubMed Central  Google Scholar 

  88. White BS, Lanc I, O'Neal J, Gupta H, Fulton RS, Schmidt H, Fronick C, Belter EA Jr, Fiala M, King J, Ahmann GJ, DeRome M, Mardis ER, Vij R, DiPersio JF, Levy J, Auclair D, Tomasson MH (2018) A multiple myeloma-specific capture sequencing platform discovers novel translocations and frequent, risk-associated point mutations in IGLL5. Blood Cancer J 8(3):35

    PubMed  PubMed Central  Google Scholar 

  89. Ryland GL, Jones K, Chin M, Markham J, Aydogan E, Kankanige Y, Caruso M, Guinto J, Dickinson M, Prince HM, Yong K, Blombery P (2018) Novel genomic findings in multiple myeloma identified through routine diagnostic sequencing. J Clin Pathol 71(10):895–899

    CAS  PubMed  Google Scholar 

  90. Apps R, Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci 6(4):297–311

    CAS  PubMed  Google Scholar 

  91. Biancheri R, Cassandrini D, Pinto F, Trovato R, Di Rocco M, Mirabelli-Badenier M, Pedemonte M, Panicucci C, Trucks H, Sander T, Zara F, Rossi A, Striano P, Minetti C, Santorelli FM (2013) EXOSC3 mutations in isolated cerebellar hypoplasia and spinal anterior horn involvement. J Neurol 260(7):1866–1870

    CAS  PubMed  Google Scholar 

  92. Schwabova J, Brozkova DS, Petrak B, Mojzisova M, Pavlickova K, Haberlova J, Mrazkova L, Hedvicakova P, Hornofova L, Kaluzova M, Fencl F, Krutova M, Zamecnik J, Seeman P (2013) Homozygous EXOSC3 mutation c.92G→C, p.G31A is a founder mutation causing severe pontocerebellar hypoplasia type 1 among the Czech Roma. J Neurogenet 27(4):163–169

    CAS  PubMed  Google Scholar 

  93. Di Giovambattista AP, Jacome Querejeta I, Ventura Faci P, Rodriguez Martinez G, Ramos Fuentes F (2017) [Familial EXOSC3-related pontocerebellar hypoplasia]. An Pediatr (Barc) 86(5):284–286

    Google Scholar 

  94. Schottmann G, Picker-Minh S, Schwarz JM, Gill E, Rodenburg RJT, Stenzel W, Kaindl AM, Schuelke M (2017) Recessive mutation in EXOSC3 associates with mitochondrial dysfunction and pontocerebellar hypoplasia. Mitochondrion 37:46–54

    CAS  PubMed  Google Scholar 

  95. Fasken MB, Losh JS, Leung SW, Brutus S, Avin B, Vaught JC, Potter-Birriel J, Craig T, Conn GL, Mills-Lujan K, Corbett AH, van Hoof A (2017) Insight into the RNA exosome complex through modeling pontocerebellar hypoplasia type 1b disease mutations in yeast. Genetics 205(1):221–237

    CAS  PubMed  Google Scholar 

  96. Gillespie A, Gabunilas J, Jen JC, Chanfreau GF (2017) Mutations of EXOSC3/Rrp40p associated with neurological diseases impact ribosomal RNA processing functions of the exosome in S. cerevisiae. RNA 23(4):466–472

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Mukherjee D, Gao M, O’Connor JP, Raijmakers R, Pruijn G, Lutz CS, Wilusz J (2002) The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J 21(1-2):165–174

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Laubach J, Richardson P, Anderson K (2011) Multiple myeloma. Annu Rev Med 62:249–264

    CAS  PubMed  Google Scholar 

  99. Kumar SK, Rajkumar V, Kyle RA, van Duin M, Sonneveld P, Mateos MV, Gay F, Anderson KC (2017) Multiple myeloma. Nat Rev Dis Primers 3:17046

    PubMed  Google Scholar 

  100. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30

    PubMed  Google Scholar 

  101. Reis FP, Pobre V, Silva IJ, Malecki M, Arraiano CM (2013) The RNase II/RNB family of exoribonucleases: putting the ‘Dis’ in disease. Wiley Interdiscip Rev RNA 4(5):607–615

    CAS  PubMed  Google Scholar 

  102. Robinson SR, Oliver AW, Chevassut TJ, Newbury SF (2015) The 3′ to 5′ exoribonuclease DIS3: from structure and mechanisms to biological functions and role in human disease. Biomolecules 5(3):1515–1539

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Tomecki R, Drazkowska K, Kucinski I, Stodus K, Szczesny RJ, Gruchota J, Owczarek EP, Kalisiak K, Dziembowski A (2014) Multiple myeloma-associated hDIS3 mutations cause perturbations in cellular RNA metabolism and suggest hDIS3 PIN domain as a potential drug target. Nucleic Acids Res 42(2):1270–1290

    CAS  PubMed  Google Scholar 

  104. Frazao C, McVey CE, Amblar M, Barbas A, Vonrhein C, Arraiano CM, Carrondo MA (2006) Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex. Nature 443(7107):110–114

    CAS  PubMed  Google Scholar 

  105. Snee MJ, Wilson WC, Zhu Y, Chen SY, Wilson BA, Kseib C, O'Neal J, Mahajan N, Tomasson MH, Arur S, Skeath JB (2016) Collaborative control of cell cycle progression by the RNA exonuclease Dis3 and Ras is conserved across species. Genetics 203(2):749–762

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Smith SB, Kiss DL, Turk E, Tartakoff AM, Andrulis ED (2011) Pronounced and extensive microtubule defects in a Saccharomyces cerevisiae DIS3 mutant. Yeast 28(11):755–769

    CAS  PubMed  Google Scholar 

  107. Murakami H, Goto DB, Toda T, Chen ES, Grewal SI, Martienssen RA, Yanagida M (2007) Ribonuclease activity of Dis3 is required for mitotic progression and provides a possible link between heterochromatin and kinetochore function. PLoS One 2(3):e317

    PubMed  PubMed Central  Google Scholar 

  108. Segalla S, Pivetti S, Todoerti K, Chudzik MA, Giuliani EC, Lazzaro F, Volta V, Lazarevic D, Musco G, Muzi-Falconi M, Neri A, Biffo S, Tonon G (2015) The ribonuclease DIS3 promotes let-7 miRNA maturation by degrading the pluripotency factor LIN28B mRNA. Nucleic Acids Res 43(10):5182–5193

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Basu U, Meng FL, Keim C, Grinstein V, Pefanis E, Eccleston J, Zhang T, Myers D, Wasserman CR, Wesemann DR, Januszyk K, Gregory RI, Deng H, Lima CD, Alt FW (2011) The RNA exosome targets the AID cytidine deaminase to both strands of transcribed duplex DNA substrates. Cell 144(3):353–363

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F (2015) Proteomics. Tissue-based map of the human proteome. Science 347(6220):1260419

    PubMed  Google Scholar 

  111. Budde BS, Namavar Y, Barth PG, Poll-The BT, Nurnberg G, Becker C, van Ruissen F, Weterman MA, Fluiter K, te Beek ET, Aronica E, van der Knaap MS, Hohne W, Toliat MR, Crow YJ, Steinling M, Voit T, Roelenso F, Brussel W, Brockmann K, Kyllerman M, Boltshauser E, Hammersen G, Willemsen M, Basel-Vanagaite L, Krageloh-Mann I, de Vries LS, Sztriha L, Muntoni F, Ferrie CD, Battini R, Hennekam RC, Grillo E, Beemer FA, Stoets LM, Wollnik B, Nurnberg P, Baas F (2008) tRNA splicing endonuclease mutations cause pontocerebellar hypoplasia. Nat Genet 40(9):1113–1118

    CAS  PubMed  Google Scholar 

  112. Edvardson S, Shaag A, Kolesnikova O, Gomori JM, Tarassov I, Einbinder T, Saada A, Elpeleg O (2007) Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am J Hum Genet 81(4):857–862

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Agamy O, Ben Zeev B, Lev D, Marcus B, Fine D, Su D, Narkis G, Ofir R, Hoffmann C, Leshinsky-Silver E, Flusser H, Sivan S, Soll D, Lerman-Sagie T, Birk OS (2010) Mutations disrupting selenocysteine formation cause progressive cerebello-cerebral atrophy. Am J Hum Genet 87(4):538–544

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Karaca E, Weitzer S, Pehlivan D, Shiraishi H, Gogakos T, Hanada T, Jhangiani SN, Wiszniewski W, Withers M, Campbell IM, Erdin S, Isikay S, Franco LM, Gonzaga-Jauregui C, Gambin T, Gelowani V, Hunter JV, Yesil G, Koparir E, Yilmaz S, Brown M, Briskin D, Hafner M, Morozov P, Farazi TA, Bernreuther C, Glatzel M, Trattnig S, Friske J, Kronnerwetter C, Bainbridge MN, Gezdirici A, Seven M, Muzny DM, Boerwinkle E, Ozen M, Baylor Hopkins Center for Mendelian Genomics, Clausen T, Tuschl T, Yuksel A, Hess A, Gibbs RA, Martinez J, Penninger JM, Lupski JR (2014) Human CLP1 mutations alter tRNA biogenesis, affecting both peripheral and central nervous system function. Cell 157(3):636–650

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Schaffer AE, Eggens VR, Caglayan AO, Reuter MS, Scott E, Coufal NG, Silhavy JL, Xue Y, Kayserili H, Yasuno K, Rosti RO, Abdellateef M, Caglar C, Kasher PR, Cazemier JL, Weterman MA, Cantagrel V, Cai N, Zweier C, Altunoglu U, Satkin NB, Aktar F, Tuysuz B, Yalcinkaya C, Caksen H, Bilguvar K, Fu XD, Trotta CR, Gabriel S, Reis A, Gunel M, Baas F, Gleeson JG (2014) CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration. Cell 157(3):651–663

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Vithana EN, Abu-Safieh L, Allen MJ, Carey A, Papaioannou M, Chakarova C, Al-Maghtheh M, Ebenezer ND, Willis C, Moore AT, Bird AC, Hunt DM, Bhattacharya SS (2001) A human homolog of yeast pre-mRNA splicing gene, PRP31, underlies autosomal dominant retinitis pigmentosa on chromosome 19q13.4 (RP11). Mol Cell 8(2):375–381

    CAS  PubMed  Google Scholar 

  117. Linder B, Fischer U, Gehring NH (2015) mRNA metabolism and neuronal disease. FEBS Lett 589(14):1598–1606

    CAS  PubMed  Google Scholar 

  118. Schuch B, Feigenbutz M, Makino DL, Falk S, Basquin C, Mitchell P, Conti E (2014) The exosome-binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase. EMBO J 33(23):2829–2846

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Shi Y, Pellarin R, Fridy PC, Fernandez-Martinez J, Thompson MK, Li Y, Wang QJ, Sali A, Rout MP, Chait BT (2015) A strategy for dissecting the architectures of native macromolecular assemblies. Nat Methods 12(12):1135–1138

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Araki Y, Takahashi S, Kobayashi T, Kajiho H, Hoshino S, Katada T (2001) Ski7p G protein interacts with the exosome and the Ski complex for 3′-to-5′ mRNA decay in yeast. EMBO J 20(17):4684–4693

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang L, Lewis MS, Johnson AW (2005) Domain interactions within the Ski2/3/8 complex and between the Ski complex and Ski7p. RNA 11(8):1291–1302

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank our colleagues Elena Conti, Christopher D. Lima, and Ambro van Hoof for sharing their expertise in analysis of the RNA exosome as well as members of the Corbett lab for helpful discussions and comments. This work was supported by both an NIH R01 grant (GM058728) and NIH R21 grant (AG054206) to AHC and both an NIH F32 grant (GM125350) and a Postdoctoral Enrichment Award from the Burroughs Wellcome Fund to DJM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Milo B. Fasken or Anita H. Corbett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fasken, M.B., Morton, D.J., Kuiper, E.G., Jones, S.K., Leung, S.W., Corbett, A.H. (2020). The RNA Exosome and Human Disease. In: LaCava, J., Vaňáčová, Š. (eds) The Eukaryotic RNA Exosome. Methods in Molecular Biology, vol 2062. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9822-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9822-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9821-0

  • Online ISBN: 978-1-4939-9822-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics