Skip to main content

Analyzing Somatic DNA Repair in Arabidopsis Meiotic Mutants

  • Protocol
  • First Online:
Plant Meiosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2061))

Abstract

Meiotic and somatic recombination share a common set of factors. Thus, the analysis of somatic DNA repair in meiotic mutant lines should be of special interest. Growth defects of mutant plants induced by specific genotoxins can thereby hint to DNA repair functions of the affected proteins. Here, we describe two kinds of approaches to characterize deficiencies in DNA repair in mutant lines of Arabidopsis thaliana, after genotoxin treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Osman K, Higgins JD, Sanchez-Moran E et al (2011) Pathways to meiotic recombination in Arabidopsis thaliana. New Phytol 190(3):523–544. https://doi.org/10.1111/j.1469-8137.2011.03665.x

    Article  CAS  PubMed  Google Scholar 

  2. Sanchez-Moran E, Armstrong SJ (2014) Meiotic chromosome synapsis and recombination in Arabidopsis thaliana: new ways of integrating cytological and molecular approaches. Chromosom Res 22(2):179–190. https://doi.org/10.1007/s10577-014-9426-8

    Article  CAS  Google Scholar 

  3. Knoll A, Schröpfer S, Puchta H (2014) The RTR complex as caretaker of genome stability and its unique meiotic function in plants. Front Plant Sci 5:33. https://doi.org/10.3389/fpls.2014.00033

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hartung F, Suer S, Puchta H (2007) Two closely related RecQ helicases have antagonistic roles in homologous recombination and DNA repair in Arabidopsis thaliana. Proc Natl Acad Sci U S A 104(47):18836–18841. https://doi.org/10.1073/pnas.0705998104

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hartung F, Suer S, Knoll A et al (2008) Topoisomerase 3alpha and RMI1 suppress somatic crossovers and are essential for resolution of meiotic recombination intermediates in Arabidopsis thaliana. PLoS Genet 4(12):e1000285. https://doi.org/10.1371/journal.pgen.1000285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dorn A, Röhrig S, Papp K et al (2018) The topoisomerase 3α zinc-finger domain T1 of Arabidopsis thaliana is required for targeting the enzyme activity to Holliday junction-like DNA repair intermediates. PLoS Genet 14(9):e1007674. https://doi.org/10.1371/journal.pgen.1007674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chelysheva L, Vezon D, Belcram K et al (2008) The Arabidopsis BLAP75/Rmi1 homologue plays crucial roles in meiotic double-strand break repair. PLoS Genet 4(12):e1000309. https://doi.org/10.1371/journal.pgen.1000309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berchowitz LE, Francis KE, Bey AL et al (2007) The role of AtMUS81 in interference-insensitive crossovers in A. thaliana. PLoS Genet 3(8):e132. https://doi.org/10.1371/journal.pgen.0030132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pradillo M, Knoll A, Oliver C et al (2015) Involvement of the Cohesin Cofactor PDS5 (SPO76) During Meiosis and DNA Repair in Arabidopsis thaliana. Front Plant Sci 6:1034. https://doi.org/10.3389/fpls.2015.01034

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rink SM, Lipman R, Alley SC et al (1996) Bending of DNA by the mitomycin C-induced, GpG intrastrand cross-link. Chem Res Toxicol 9(2):382–389. https://doi.org/10.1021/tx950156q

    Article  CAS  PubMed  Google Scholar 

  11. Eastman A (1985) Interstrand cross-links and sequence specificity in the reaction of cis-dichloro(ethylenediamine)platinum(II) with DNA. Biochemistry 24(19):5027–5032

    Article  CAS  Google Scholar 

  12. Hartung F, Suer S, Bergmann T et al (2006) The role of AtMUS81 in DNA repair and its genetic interaction with the helicase AtRecQ4A. Nucleic Acids Res 34(16):4438–4448. https://doi.org/10.1093/nar/gkl576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fulcher N, Sablowski R (2009) Hypersensitivity to DNA damage in plant stem cell niches. Proc Natl Acad Sci U S A 106(49):20984–20988. https://doi.org/10.1073/pnas.0909218106

    Article  PubMed  PubMed Central  Google Scholar 

  14. Curtis MJ, Hays JB (2007) Tolerance of dividing cells to replication stress in UVB-irradiated Arabidopsis roots: requirements for DNA translesion polymerases η and ζ. DNA Repair (Amst) 6(9):1341–1358. https://doi.org/10.1016/j.dnarep.2007.03.004

    Article  CAS  PubMed  Google Scholar 

  15. Röhrig S, Schröpfer S, Knoll A et al (2016) The RTR complex partner RMI2 and the DNA helicase RTEL1 are both independently involved in preserving the stability of 45S rDNA repeats in Arabidopsis thaliana. PLoS Genet 12(10):e1006394. https://doi.org/10.1371/journal.pgen.1006394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Klemm T, Mannuß A, Kobbe D et al (2017) The DNA translocase RAD5A acts independently of the other main DNA repair pathways, and requires both its ATPase and RING domain for activity in Arabidopsis thaliana. Plant J 91(4):725–740. https://doi.org/10.1111/tpj.13602

    Article  CAS  PubMed  Google Scholar 

  17. Recker J, Knoll A, Puchta H (2014) The Arabidopsis thaliana homolog of the helicase RTEL1 plays multiple roles in preserving genome stability. Plant Cell 26(12):4889–4902. https://doi.org/10.1105/tpc.114.132472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Herrmann NJ, Knoll A, Puchta H (2015) The nuclease FAN1 is involved in DNA crosslink repair in Arabidopsis thaliana independently of the nuclease MUS81. Nucleic Acids Res 43(7):3653–3666. https://doi.org/10.1093/nar/gkv208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Puchta H, Hohn B (2012) In planta somatic homologous recombination assay revisited: a successful and versatile, but delicate tool. Plant Cell 24(11):4324–4331. https://doi.org/10.1105/tpc.112.101824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schmidt-Puchta W, Orel N, Kyryk A et al (2004) Intrachromosomal homologous recombination in Arabidopsis thaliana. Methods Mol Biol 262:25–34. https://doi.org/10.1385/1-59259-761-0:025

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Research Council (Advanced Grant “COMREC” and “CRISBREED”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Puchta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dorn, A., Puchta, H. (2020). Analyzing Somatic DNA Repair in Arabidopsis Meiotic Mutants. In: Pradillo, M., Heckmann, S. (eds) Plant Meiosis. Methods in Molecular Biology, vol 2061. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9818-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9818-0_25

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9817-3

  • Online ISBN: 978-1-4939-9818-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics