Skip to main content

Analytical Methodology of Meiosis in Autopolyploid and Allopolyploid Plants

  • Protocol
  • First Online:
Plant Meiosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2061))

Abstract

Meiosis is the cellular process responsible for producing gametes with half the genetic content of the parent cells. Integral parts of the process in most diploid organisms include the recognition, pairing, synapsis, and recombination of homologous chromosomes, which are prerequisites for balanced segregation of half-bivalents during meiosis I. In polyploids, the presence of more than two sets of chromosomes adds to the basic meiotic program of their diploid progenitors the possibility of interactions between more than two chromosomes and the formation of multivalents, which has implications on chromosome segregations and fertility. The mode of how chromosomes behave in meiosis in competitive situations has been the aim of many studies in polyploid species, some of which are considered here. But polyploids are also of interest in the study of meiosis because some of them tolerate the loss of chromosome segments or complete chromosomes as well as the addition of chromosomes from related species. Deletions allow to assess the effect of specific chromosome segments on meiotic behavior. Introgression lines are excellent materials to monitor the behavior of a given chromosome in the genetic background of the recipient species. We focus on this approach here as based on studies carried out in bread wheat, which is commonly used as a model species for meiosis studies. In addition to highlighting the relevance of the use of materials derived from polyploids in the study of meiosis, cytogenetics tools such as fluorescence in situ hybridization and the immunolabeling of proteins interacting with DNA are also emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501

    Article  Google Scholar 

  2. Renny-Byfield S, Wendel JF (2014) Doubling down on genomes: polyploidy and crop plants. Am J Bot 101:1711–1725. https://doi.org/10.3732/ajb.1400119

    Article  PubMed  Google Scholar 

  3. Keeney S, Giroux CN, Kleckner N (1997) Meiosis-specific DNA double-strand breaks are catalysed by Spo11, a member of a widely conserved protein family. Cell 88:375–384

    Article  CAS  PubMed  Google Scholar 

  4. Neale MJ, Keeney S (2006) Clarifying the mechanics of DNA strand exchange in meiotic recombination. Nature 442:153–158. https://doi.org/10.1038/nature04885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hunter N, Kleckner N (2001) The single-end invasion: an asymmetric intermediate at the double-strand break to double-Holliday junction transition of meiotic recombination. Cell 106:59–70

    Article  CAS  PubMed  Google Scholar 

  6. Caryl AP, Armstrong SJ, Jones GH, Franklin FCH (2000) A homologue of the yeast HOP1 gene is inactivated in the Arabidopsis meiotic mutant asy1. Chromosoma 109:62–71

    Article  CAS  PubMed  Google Scholar 

  7. Nonomura KI, Nakano M, Eiguchi M, Suzuki T, Kurata N (2006) PAIR2 is essential for homologous chromosome synapsis in rice meiosis I. J Cell Sci 119:217–225. https://doi.org/10.1242/jcs.02736

    Article  CAS  PubMed  Google Scholar 

  8. Wang KJ, Wang M, Tang D, Shen Y, Qin BX, Li M et al (2011) PAIR3, an axis-associated protein, is essential for the recruitment of recombination elements onto meiotic chromosomes in rice. Mol Biol Cell 22:12–19. https://doi.org/10.1091/mbc.E10-08-0667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ferdous M, Higgins JD, Osman K, Lambing C, Roitinger E, Mechtler K et al (2012) Inter-homolog crossing-over and synapsis in Arabidopsis meiosis are dependent on the chromosome axis protein AtASY3. PLoS Genet 8:e1002507. https://doi.org/10.1371/journal.pgen.1002507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roeder GS (1997) Meiotic chromosomes: it takes two to tango. Genes Dev 11:2600–2621

    Article  CAS  PubMed  Google Scholar 

  11. Baudat F, Manova K, Yuen JP, Jasin M, Keeney S (2000) Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol Cell 6:989–998

    Article  CAS  PubMed  Google Scholar 

  12. Romanienko PJ, Camerini-Otero RD (2000) The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol Cell 6:975–987

    Article  CAS  PubMed  Google Scholar 

  13. Page SL, Hawley RS (2004) The genetics and molecular biology of the synaptonemal complex. Annu Rev Cell Dev Biol 20:525–558. https://doi.org/10.1146/annurev.cellbio.19.111301.155141

    Article  CAS  PubMed  Google Scholar 

  14. Zickler D, Kleckner N (2015) Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb Perspect Biol 7:a016626. https://doi.org/10.1101/cshperspect.a016626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Higgins JD, Osman K, Jones GH, Franklin FCH (2014) Factors underlying restricted crossover localization in barley meiosis. Annu Rev Genet 48:29–47. https://doi.org/10.1146/annurev-genet-120213-092509

    Article  CAS  PubMed  Google Scholar 

  16. Bass HW, Marshall WF, Sedat JW, Agard DA, Cande WZ (1997) Telomeres cluster de novo before the initiation of synapsis: a three-dimensional spatial analysis of telomere positions before and during meiotic prophase. J Cell Biol 137:5–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maestra B, De Jong JH, Shepherd K, Naranjo T (2002) Chromosome arrangement and behaviour of two rye telosomes at the onset of meiosis in disomic wheat-5RL addition lines with and without the Ph1 locus. Chromosom Res 10:655–667

    Article  CAS  Google Scholar 

  18. Loidl J, Jones GH (1986) Synaptonemal complex spreading in Allium. I Triploid A sphaerocephalon. Chromosoma 93:420–428

    Article  Google Scholar 

  19. Loidl J (1986) Synaptonemal complex spreading in Allium. II. Tetraploid A. vineale. Can J Genet Cytol 28:754–761

    Article  Google Scholar 

  20. Vincent JE, Jones GH (1993) Meiosis in autopolyploid Crepis capillaris. I. Triploids and trisomics; implications for models of chromosome pairing. Chromosoma 102:195–206

    Article  Google Scholar 

  21. Thomas HM, Thomas BJ (1993) Meiosis in triploid Lolium. I Synaptonemal complex formation and chromosome configurations at metaphase I in aneuploidy autotriploid L. multiflorum. Genome 37:181–189

    Article  Google Scholar 

  22. Jones GH, Vincent JE (1994) Meiosis in autopolyploid Crepis capillaris. II Autotetraploids. Genome 37:497–505

    Article  CAS  PubMed  Google Scholar 

  23. Stack S, Roelofs D (1996) Localized chiasmata and meiotic nodules in the tetraploid onion Allium porrum. Genome 39:770–783

    Article  CAS  PubMed  Google Scholar 

  24. Gillies CB, Kuspira J, Bhambhani RN (1987) Genetic and cytogenetic analyses of the a genome of Triticum monococcum. IV Synaptonemal complex formation in autotetraploids. Genome 29:309–318

    Article  Google Scholar 

  25. Chatterjee R, Jenkins G (1993) Meiotic chromosome interactions in inbred autotetraploid rye (Secale cereale). Genome 36:131–138

    Article  CAS  PubMed  Google Scholar 

  26. Santos JL, Cuadrado MC, Diez M, Romero C, Cuñado N, Naranjo T et al (1995) Further insights on chromosomal pairing of autopolyploids: a triploid and tetraploids of rye. Chromosoma 104:298–307

    Article  CAS  PubMed  Google Scholar 

  27. Díez M, Santos JL, Cuñado N, Naranjo T (2001) Meiosis in primary trisomics of rye: considerations for models of chromosome pairing. Chromosom Res 9:13–23

    Article  Google Scholar 

  28. Sybenga J (1975) Meiotic configurations. Springer, Berlin

    Book  Google Scholar 

  29. Jenkins G, White J (1990) Elimination of synaptonemal complex irregularities in a Lolium hybrid. Heredity 64:45–53

    Article  Google Scholar 

  30. Santos JL, Alfaro D, Sanchez-Moran E, Armstrong SJ, Franklin FCH, Jones GH (2003) Partial diploidization of meiosis in autotetraploid Arabidopsis thaliana. Genetics 165:1533–1540

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu JH, Datson PM, Manako KI, Murray BG (2014) Meiotic chromosome pairing behaviour of natural tetraploids and induced autotetraploids of Actinidia chinensis. Theor Appl Genet 127:549–557

    Article  PubMed  Google Scholar 

  32. Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639. https://doi.org/10.1146/annurev.ecolsys.33.010802.150437

    Article  Google Scholar 

  33. Jenczewski E, Alix K (2004) From diploids to allopolyploids: the emergence of efficient pairing control genes in plants. Crit Rev Plant Sci 23:21–45. https://doi.org/10.1080/07352680490273239

    Article  CAS  Google Scholar 

  34. Naranjo T, Benavente E (2015) The mode and regulation of chromosome pairing in wheat-alien hybrids (Ph genes, an updated view). In: Molnár-Láng M, Ceoloni C, Doležel J (eds) Alien introgression in wheat. Cytogenetics, molecular biology and genomics. Springer, Cham, pp 133–162

    Google Scholar 

  35. Feldman M, Levy AA (2015) Origin and evolution of wheat and related triticeae species. In: Molnár-Láng M, Ceoloni C, Doležel J (eds) Alien introgression in wheat. Cytogenetics. Molecular biology and genomics. Springer, Cham, pp 21–76

    Google Scholar 

  36. Sears ER, Okamoto M (1958) Intergenomic chromosome relationship in hexaploid wheat. In: Proc 10th int Congr genetics. University of Toronto Press, Toronto, pp 258–259

    Google Scholar 

  37. Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715

    Article  Google Scholar 

  38. Riley R, Kempana C (1963) The homoeologous nature of the non-homologous meiotic pairing in Triticum aestivum deficient for chromosome V (5B). Heredity 18:287–306

    Article  Google Scholar 

  39. Mello-Sampayo T (1971) Genetic regulation of meiotic chromosome pairing by chromosome 3D of Triticum aestivum. Nat New Biol 230:22–23

    Article  CAS  PubMed  Google Scholar 

  40. Prieto P, Moore G, Reader S (2005) Control of conformation changes associated with homologue recognition during meiosis. Theor Appl Genet 111:505–510. https://doi.org/10.1007/s00122-005-2040-6

    Article  PubMed  Google Scholar 

  41. Gill KS, Gill BS, Endo TR, Mukai Y (1993) Fine physical mapping of Ph1, a chromosome pairing regulator gene in polyploid wheat. Genetics 134:1231–1236

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Griffiths S, Sharp R, Foot TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752. https://doi.org/10.1038/nature04434

    Article  CAS  PubMed  Google Scholar 

  43. Rey MD, Martín AM, Higgins J, Swarbreck D, Uauy C, Shaw P, Moore G (2017) Exploiting the ZIP4 homologue within the wheat Ph1 locus has identified two lines exhibiting homoeologous crossover in wheat-wild relative hybrids. Mol Breeding 37:95. https://doi.org/10.1007/s11032-017-0700-2

    Article  CAS  Google Scholar 

  44. Bhullar R, Nagarajan R, Bennypaul H, Sidhu GK, Sidhu G, Rustgi S, von Wettstein D, Gill KS (2014) Silencing of a metaphase I specific gene present in the Ph1 locus results in phenotype similar to that of the Ph1 mutations. Proc Natl Acad Sci U S A 111:14187–14192. https://doi.org/10.1073/pnas.1416241111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sutton T, Whitford R, Baumann U, Dong C, Able JA, Langridge P (2003) The Ph2 pairing homoeologous locus of wheat (Triticum aestivum): identification of candidate meiotic genes using a comparative genetics approach. Plant J 36:443–456

    Article  CAS  PubMed  Google Scholar 

  46. Dong C, Whitford R, Langridge P (2002) A DNA mismatch repair gene links to the Ph2 locus in wheat. Genome 45:116–124

    Article  CAS  PubMed  Google Scholar 

  47. Lloyd AH, Milligan AS, Langridge P, Able JA (2007) TaMSH7: a cereal mismatch repair gene that affects fertility in transgenic barley (Hordeum vulgare L.). BMC Plant Biol 7:67. https://doi.org/10.1186/1471-2229-7-67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Grandont L, Jenczewski E, Lloyd A (2013) Meiosis and its deviations in polyploid plants. Cytogenet Genome Res 140:171–184. https://doi.org/10.1159/000351730

    Article  CAS  PubMed  Google Scholar 

  49. Cifuentes M, Eber F, Lucas MO, Lode M, Chèvre AM, Jenczewski E (2010) Repeated polyploidy drove different levels of crossover suppression between homoeologous chromosomes in Brassica napus allohaploids. Plant Cell 22:2265–2276. https://doi.org/10.1105/tpc.109.072991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Grandont L, Cuñado N, Coriton O, Huteau V, Eber F, Chèvre AM et al (2014) Homoeologous chromosome sorting and progression of meiotic recombination in Brassica napus: ploidy does matter! Plant Cell 26:1448–1463. https://doi.org/10.1105/tpc.114.122788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Corredor E, Naranjo T (2007) Effect of colchicine and telocentric chromosome conformation on centromere and telomere dynamics at meiotic prophase I in wheat-rye additions. Chromosom Res 15:231–245. https://doi.org/10.1007/s10577-006-1117-7

    Article  CAS  Google Scholar 

  52. Naranjo T (2014) Dynamics of Rye telomeres in a wheat background during early meiosis. Cytogenet Genome Res 143:60–68

    Article  PubMed  Google Scholar 

  53. Naranjo T (2018) Variable patterning of chromatin remodeling, telomere positioning, synapsis, and chiasma formation of individual rye chromosomes in meiosis of wheat-rye additions. Front Plant Sci 9:880. https://doi.org/10.3389/fpls.2018.00880

    Article  PubMed  PubMed Central  Google Scholar 

  54. Schwarzacher T, AnamthawatJonsson K, Harrison GE et al (1992) Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat. Theor Appl Genet 84:778–786

    Article  CAS  PubMed  Google Scholar 

  55. Islam AKMR, Shepherd KW, Sparrow DHB (1978) Production and characterization of wheat-barley addition lines. In: Proc 5th Int Wheat Genet Symp, New Delhi, pp 365–371

    Google Scholar 

  56. Islam AKMR, Shepherd KW, Sparrow DHB (1981) Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity 46:161–174. https://doi.org/10.1038/hdy.1981.24

    Article  Google Scholar 

  57. Miller TE, Reader SM, Chapman V (1982) The addition of Hordeum chilense chromosomes to wheat. In: Induced variability in plant breeding. Proc Int Symp Eucarpia, Pudoc, Wageningen, pp 79–81

    Google Scholar 

  58. Rey MD, Calderón MC, Prieto P (2015) The use of the ph1b mutant to induce recombination between the chromosomes of wheat and barley. Front Plant Sci 6:160. https://doi.org/10.3389/fpls.2015.00160

    Article  PubMed  PubMed Central  Google Scholar 

  59. Calderón MC, Rey MD, Martín A, Prieto P (2018) Homoeologous chromosomes from two Hordeum species can recognize and associate during meiosis in wheat in the presence of the Ph1 locus. Front Plant Sci 9:585. https://doi.org/10.3389/fpls.2018.00585

    Article  PubMed  PubMed Central  Google Scholar 

  60. Friebe B, Zhang P, Linc G, Gill BS (2005) Robertsonian translocations in wheat arise by centric misdivision of univalents at anaphase I and rejoining of broken centromeres during interkinesis of meiosis II. Cytogenet Genome Res 109:293–297. https://doi.org/10.1159/000082412

    Article  CAS  PubMed  Google Scholar 

  61. Calderón MC, Rey MD, Cabrera A, Prieto P (2014) The subtelomeric region is important for chromosome recognition and pairing during meiosis. Sci Rep 4:6488. https://doi.org/10.1038/srep06488

    Article  CAS  PubMed Central  Google Scholar 

  62. Naranjo T, Valenzuela NT, Perera E (2010) Chiasma frequency is region specific and chromosome conformation dependent in a rye chromosome added to wheat. Cytogenet Genome Res 129:133–142. https://doi.org/10.1159/000314029

    Article  CAS  PubMed  Google Scholar 

  63. Sears ER (1966) Nullisomic-tetrasomic combinations in hexaploid wheat. In: Lewis DR (ed) Chromosome manipulation and plant genetics. Oliver and Boyd, London, pp 29–47

    Chapter  Google Scholar 

  64. Joppa LR, Williams ND (1977) D-genome substitution-monosomics of durum-wheat. Crop Sci 17:772–776

    Article  Google Scholar 

  65. Friebe B, Qi LL, Liu C et al (2011) Genetic compensation abilities of Aegilops speltoides chromosomes for homoeologous B-genome chromosomes of polyploid wheat in disomic S(B) chromosome substitution lines. Cytogenet Genome Res 134:144–150

    Article  CAS  PubMed  Google Scholar 

  66. Islam AKMR, Shepherd KW (1992) Substituting ability of individual barley chromosomes for wheat chromosomes. 1. Substitutions involving barley chromosomes 1, 3 and 6. Plant Breed 109:141–150. https://doi.org/10.1111/j.1439-0523.1992.tb00164.x

    Article  Google Scholar 

  67. Islam AKMR, Shepherd KW (1995) Substitution of barley chromosome 4 for group 4 homoelogous of wheat. In: Li ZS, Xin ZY (eds) Proc 8th int wheat genet symp, Beijing, China, 20–25 July 1993. China Agricultural Scientech Press, Beijing, pp 141–144

    Google Scholar 

  68. Ya-Ping Y, Xiao C, Si-He X, Islam AKMR, Zhi-Yong X (2003) Identification of wheat-barley 2H alien substitution lines. Acta Bot Sin 45:1096–1102

    Google Scholar 

  69. Silkova OG, Dobrovolskaya OB, Dubovets NI et al (2007) Production of wheat-rye substitution lines based on winter rye cultivars with karyotype identification by means of C-banding, GISH, and SSR markers. Russ J Genet 43:957. https://doi.org/10.1134/S1022795407080200

    Article  CAS  Google Scholar 

  70. Friebe B, Jiang J, Raupp WJ et al (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Article  Google Scholar 

  71. Villareal RL, Bañuelos O, Mujeeb-Kazi A, Rajaram S (1998) Agronomic performance of chromosomes 1B and T1BL.1RS near-isolines in the spring bread wheat Seri M82. Euphytica 103:195–202. https://doi.org/10.1023/a:1018392002909

    Article  Google Scholar 

  72. Zhou Y, He ZH, Sui XX, Xia XC, Zhang XK, Zhang GS (2007) Genetic improvement of grain yield and associated traits in the northern China winter wheat region from 1960 to 2000. Crop Sci 47:245–453. https://doi.org/10.2135/cropsci2006.03.0175

    Article  CAS  Google Scholar 

  73. Valenzuela NT, Perera E, Naranjo T (2013) Identifying crossover-rich regions and their effect on meiotic homologous interactions by partitioning chromosome arms of wheat and rye. Chromosom Res 21:433–445

    Article  CAS  Google Scholar 

  74. Schlegel R (2016) Current list of wheats with rye and alien introgression. Vol. 05-16, 1–18. http://www.rye-gene-map.de/rye-introgression

  75. Prieto P, Ramírez MC, Ballesteros J, Cabrera A (2001) Identification of intergenomic translocations involving wheat, Hordeum vulgare and Hordeum chilense chromosomes by FISH. Hereditas 135:171–174. https://doi.org/10.1111/j.1601-5223.2001.t01-1-00171.x

    Article  CAS  PubMed  Google Scholar 

  76. Lukaszewski AJ (2008) Unexpected behavior of an inverted rye chromosome arm in wheat. Chromosoma 117:569–578. https://doi.org/10.1007/s00412-008-0174-4

    Article  PubMed  Google Scholar 

  77. Valenzuela NT, Perera E, Naranjo T (2012) Dynamics of rye chromosome 1R regions with high and low crossover frequency in homology search and synapsis development. PLoS One 7:e36385. https://doi.org/10.1371/journal.pone.0036385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    Article  CAS  Google Scholar 

  79. Naranjo T (2015) Forcing the shift of the crossover site to proximal regions in wheat chromosomes. Theor Appl Genet 128:1855–1863. https://doi.org/10.1007/s00122-015-2552-7

    Article  CAS  PubMed  Google Scholar 

  80. Jamieson G, Evans IJ, Barnes SR (1986) An enzymic method of preparing plant chromosomes for in situ hybridization. Stain Technol 61:21–25

    Article  CAS  PubMed  Google Scholar 

  81. Murata M (1983) Staining air dried protoplasts for study of plant chromosomes. Stain Technol 58:101–106

    Article  CAS  PubMed  Google Scholar 

  82. Sallee PJ (1982) Prefixation and staining of the somatic chromosomes of corn. In: Sheridan WF (ed) Maize for biological research. University Press, University of North Dakota, Grand Forks, pp 119–120

    Google Scholar 

  83. Rayburn AL, Gill BS (1985) Use of biotin-labeled probes to map specific DNA sequences on wheat chromosomes. J Hered 76:78–81

    Article  Google Scholar 

  84. De Carvalho CR, Saraiva LS (1993) An air drying technique for maize chromosomes without enzymatic maceration. Biotech & Histochem 68:142–145

    Article  Google Scholar 

  85. Kato A (1999) Air drying method using nitrous oxide for chromosome counting in maize. Biotech & Histochem 74:160–166. https://doi.org/10.3109/10520299909047968

    Article  CAS  Google Scholar 

  86. Draeger T, Moore G (2017) Short periods of high temperature during meiosis prevent normal meiotic progression and reduce grain number in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 30:1785–1800. https://doi.org/10.1007/s00122-017-2925-1

    Article  CAS  Google Scholar 

  87. Sepsi A, Fábián A, Jäger K, Heslop-Harrison JS, Schwarzacher T (2018) ImmunoFISH: simultaneous visualisation of proteins and DNA sequences gives insight into meiotic processes in nuclei of grasses. Front Plant Sci 9:1193. https://doi.org/10.3389/fpls.2018.01193

    Article  PubMed  PubMed Central  Google Scholar 

  88. Zhang P, Friebe B (2009) FISH on plant chromosomes. In: Liehr T (ed) Fluorescence in situ hybridization (FISH) application guide. Springer, Berlin, Heidelberg, pp 365–394

    Chapter  Google Scholar 

  89. Xu SS, Liu Z, Zhang Q, Niu Z, Jan CC, Cai X (2016) Chromosome painting by GISH and multicolor FISH. In: Shahryar FK, MAK P (eds) Plant cytogenetics: methods and protocols, Methods Mol Biol, vol 1429, pp 7–21. https://doi.org/10.1007/978-1-4939-3622-9_2

    Chapter  Google Scholar 

  90. Martinez-Perez E, Shaw PJ, Moore G (2000) Polyploidy induces centromere association. J Cell Biol 148:233–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Martinez-Perez E, Shaw P, Moore G (2001) The Ph1 locus is needed to ensure specific somatic and meiotic centromere association. Nature 411:204–207

    Article  CAS  PubMed  Google Scholar 

  92. Martinez-Perez E, Shaw P, Aragon-Alcaide L, Moore G (2003) Chromosomes form into seven groups in hexaploid and tetraploid wheat as a prelude to meiosis. Plant J 36:21–29

    Article  CAS  PubMed  Google Scholar 

  93. Malik HS, Henikoff S (2009) Major evolutionary transitions in centromere complexity. Cell 138:1067–1082

    Article  CAS  PubMed  Google Scholar 

  94. Francki MG (2001) Identification of bilby, a diverged centromeric Ty1-copia retrotransposon family from cereal rye (Secale cereale L.). Genome 44:266–274

    Article  CAS  PubMed  Google Scholar 

  95. Cheng ZK, Dong F, Langdon T, Ouyang S, Buell R, Gu M, Blattner FR, Jiang J (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704. https://doi.org/10.1105/tpc.003079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wu J, Yamagata H, Hayashi-Tsugane M, Hijishita S, Fujisawa M, Shibata M, Ito Y, Nakamura M, Sakaguchi M, Yoshihara R et al (2004) Composition and structure of the centromeric region of rice chromosome 8. Plant Cell 16:967–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lim KB, Yang TJ, Hwang YJ, Kim JS, Park JY, Kwon SJ et al (2007) Characterization of the centromere and peri-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species. Plant J 49:173–183. https://doi.org/10.1111/j.1365-313X.2006.02952.x

    Article  CAS  PubMed  Google Scholar 

  98. Simpson PR, Newman MA, Davis DR, Ellis THN, Matthews PM, Lee D (1990) Identification of translocations in pea by in situ hybridization with chromosome-specific probes. Genome 33:745–749

    Article  CAS  Google Scholar 

  99. Ganal MW, Broun P, Tanksley SD (1992) Genetic mapping of tandemly repeated telomeric DNA sequences in tomato (Lycopersicon esculentum). Genomics 14:444–448

    Article  CAS  PubMed  Google Scholar 

  100. Tang Z, Yang Z, Fu S (2014) Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet 55:313–318. https://doi.org/10.1007/s13353-014-0215-z

    Article  CAS  PubMed  Google Scholar 

  101. Fu S, Chen L, Wang Y, Li M, Yang Z, Qiu L, Yan B, Ren Z, Tang Z (2015) Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. Sci Rep 5:10552. https://doi.org/10.1038/srep10552

    Article  PubMed  PubMed Central  Google Scholar 

  102. Han Y, Zhang T, Thammapichai P, Weng Y, Jiang J (2015) Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics 200:771–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Palmer DK, Oday K, Wener MH, Andrews BS, Margolis RL (1987) A 17-Kd centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol 104:805–815

    Article  CAS  PubMed  Google Scholar 

  104. Sepsi A, Higgins JD, Heslop-Harrison JS, Schwarzacher T (2017) CENH3 morphogenesis reveals dynamic centromere associations during synaptonemal complex formation and the progression through male meiosis in hexaploid wheat. Plant J 89:235–249. https://doi.org/10.1111/tpj.13379

    Article  CAS  PubMed  Google Scholar 

  105. Armstrong SJ, Caryl AP, Jones GH, Franklin FC (2002) Asy1, a protein required for meiotic chromosome synapsis, localizes to axis associated chromatin in Arabidopsis and Brassica. J Cell Sci 115:3645–3655

    Article  CAS  PubMed  Google Scholar 

  106. Mikhailova EI, Phillips D, Sosnikhina SP, Lovtsyus AV, Jones RN, Jenkins G (2006) Molecular assembly of meiotic proteins Asy1 and Zyp1 and pairing promiscuity in rye (Secale cereale L.) and its synaptic mutant sy10. Genetics 174:1247–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Higgins JD, Sanchez-Moran E, Armstrong SJ, Jones GH, Franklin FC (2005) The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes Dev 19:2488–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Khoo KH, Able AJ, Able JA (2012) The isolation and characterisation of the wheat molecular ZIPper I homologue, TaZYP1. BMC Res Notes 5:106. https://doi.org/10.1186/1756-0500-5-106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Paula CMP, Techio VH (2014) Immunolocalization of chromosome-associated proteins in plants – principles and applications. Bot Stud 55:63. https://doi.org/10.1186/s40529-014-0063-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chelysheva L, Grandont L, Vrielynck N, le Guin S, Mercier R, Grelon M (2010) An easy protocol for studying chromatin and recombination protein dynamics during Arabidopsis thaliana meiosis: immunodetection of cohesins, histones and MLH1. Cytogenet Genome Res 129:143–153. https://doi.org/10.1159/000314096

    Article  CAS  PubMed  Google Scholar 

  111. Khoo KH, Jolly HR, Able JA (2008) The RAD51 gene family in bread wheat is highly conserved across eukaryotes, with RAD51A upregulated during early meiosis. Funct Plant Biol 35:1267–1277

    Article  CAS  PubMed  Google Scholar 

  112. Franklin AE, Mcelver J, Sunjevaric I, Rothstein R, Bowen B, Cande WZ (1999) Three-dimensional microscopy of the Rad51 recombination protein during meiotic prophase. Plant Cell 11:809–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Boenisch T (2009) Antibodies. In: Kummar LG, Rudbeck L (eds) Immunohistochemical (IHC) staining methods. Dako, Carpinteria, CA, pp 1–9

    Google Scholar 

  114. Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324

    Article  Google Scholar 

  115. Prieto P, Moore G, Shaw P (2007) Fluorescence in situ hybridization on vibratome sections of plant tissues. Nat Protoc 2:1831–1838

    Article  CAS  PubMed  Google Scholar 

  116. Martín A, Rubiales D, Cabrera A (1999) A fertile amphiploid between a wild barley (Hordeum chilense) and crested wheatgrass (Agropyron cristatum). Int J Plant Sci 160:783–786

    Article  Google Scholar 

  117. Ding L, Zhao ZG, Ge XH, Li ZY (2014) Different timing and spatial separation of parental chromosomes in intergeneric somatic hybrids between Brassica napus and Orychophragmus violaceus. Genet Mol Res 13:2611–2618

    Article  CAS  PubMed  Google Scholar 

  118. Jeridi M, Perrier X, Rodier-Goud M, Ferchichi A, D’Hont A, Bakry F (2012) Cytogenetic evidence of mixed disomic and polysomic inheritance in an allotetraploid (AABB) Musa genotype. Ann Bot 110:1593–1606. https://doi.org/10.1093/aob/mcs220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Naranjo T, Maestra B, Corredor E (2005) The search of the homologous partner at early meiosis in wheat. Chromosom Res 13:9

    Article  CAS  Google Scholar 

  120. Corredor E, Lukaszewski AJ, Pachón P, Allen DC, Naranjo T (2007) Terminal regions of wheat chromosomes select their pairing partner in meiosis. Genetics 177:699–706. https://doi.org/10.1534/genetics.107.078121

    Article  PubMed  PubMed Central  Google Scholar 

  121. Aragon-Alcaide L, Miller T, Schwarzacher T, Reader S, Moore G (1996) A cereal centromeric sequence. Chromosoma 105:261–268

    Article  CAS  PubMed  Google Scholar 

  122. Manzanero S, Puertas MJ, Jiménez G, Vega JM (2000) Neocentric activity of rye 5RL chromosome in wheat. Chromosom Res 8:543–554

    Article  CAS  Google Scholar 

  123. Francki MG, Berzonsky WA, Ohm HW, Anderson JM (2002) Physical location of a HSP70 gene homologue on the centromere of chromosome 1B of wheat (Triticum aestivum L.). Theor Appl Genet 104:184–191

    Article  CAS  PubMed  Google Scholar 

  124. Dong F, Millar JT, Jackson SA, Wang FL, Ronald RC, Jiang J (1998) Centromeric regions consist of complex DNA. Proc Natl Acad Sci U S A 95:8135–8140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ma J, Wing RA, Bennetzen JL, Jackson SA (2007) Plant centromere organization: a dynamic structure with conserved functions. Trends Genet 23:134–139

    Article  CAS  PubMed  Google Scholar 

  126. Fussell CP (1987) The Rabl orientation: a prelude to synapsis. In: Moens PB (ed) Meiosis. Academic Press, Orlando, pp 275–299

    Chapter  Google Scholar 

  127. Koszul R, Kim KP, Prentiss M, Kleckner N, Kameoka S (2008) Meiotic chromosomes move by linkage to dynamic actin cables with transduction of force through the nuclear envelope. Cell 133:1188–1201. https://doi.org/10.1016/j.cell.2008.04.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Richards DM, Greer E, Martin AC, Moore G, Shaw PJ et al (2012) Quantitative dynamics of telomere bouquet formation. PLoS Comput Biol 8:e1002812. https://doi.org/10.1371/journal.pcbi.1002812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Prieto P, Shaw P, Moore G (2004) Homologous recognition during meiosis is associated with a change in chromatin conformation. Nat Cell Biol 6:906–908

    Article  CAS  PubMed  Google Scholar 

  130. Vershinin AV, Schwarzacher T, Heslop-Harrison JS (1995) The large-scale genomic organization of repetitive DNA families at the telomeres of rye chromosomes. Plant Cell 7:1823–1833. https://doi.org/10.1105/tpc.7.11.1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Linardopoulou EV, Williams EM, Fan Y, Friedman C, Young JM, Trask BJ (2005) Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature 437:94–100. https://doi.org/10.1038/nature04029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mao L, Devos KM, Zhu L, Gale MD (1997) Cloning and genetic mapping of wheat telomere-associated sequences. Mol Gen Genet 254:584–591

    Article  CAS  PubMed  Google Scholar 

  133. Gaiero P, Mazzella C, Vilaro F, Speranza P, de Jong H (2017) Pairing analysis and in situ hybridisation reveal autopolyploid-like behaviour in Solanum commersonii × S. tuberosum (potato) interspecific hybrids. Euphytica 213:137. https://doi.org/10.1007/s10681-017-1922-4

    Article  CAS  Google Scholar 

  134. Zhan Z, Nwafor CC, Hou Z, Gong J, Zhu B, Jiang Y et al (2017) Cytological and morphological analysis of hybrids between Brassicoraphanus, and Brassica napus for introgression of clubroot resistant trait into Brassica napus L. PLoS One 12:e0177470. https://doi.org/10.1371/journal.pone.0177470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Higgins JD, Perry RM, Barakate A, Ramsay L, Waugh R, Halpin C, Armstrong SJ, Franklin FC (2012) Spatio-temporal asymmetry of the meiotic program underlies the predominantly distal distribution of meiotic crossovers in barley. Plant Cell 24:4096–4109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Colas I, Darrier B, Arrieta M, Mittmann SU, Ramsay L, Sourdille P, Waugh R (2017) Observation of extensive chromosome axis remodeling during the “diffuse-phase” of meiosis in large genome cereals. Front Plant Sci 8:1235. https://doi.org/10.3389/fpls.2017.01235

    Article  PubMed  PubMed Central  Google Scholar 

  137. Aragon-Alcaide L, Beven A, Moore G et al (1998) The use of vibratome sections of cereal spikelets to study anther development and meiosis. Plant J 14:503–508

    Article  Google Scholar 

  138. Thompson WF, Beven AF, Wells B, Shaw PJ (1997) Sites of DNA transcription are widely dispersed through the nucleolus in Pisum sativum and can comprise single genes. Plant J 12:571–581

    Article  CAS  PubMed  Google Scholar 

  139. Prieto P, Santos AP, Moore G, Shaw PJ (2004) Chromosomes associate premeiotically and in xylem vessel cells via their telomeres and centromeres in diploid rice (Oryza sativa). Chromosoma 112:300–307. https://doi.org/10.1007/s00412-004-0274-8

    Article  PubMed  Google Scholar 

  140. He L, Braz GT, Torres JA, Jiang J (2018) Chromosome painting in meiosis reveals pairing of specific chromosomes in polyploid Solanum species. Chromosoma 127:505–513. https://doi.org/10.1007/s00412-018-0682-9

    Article  PubMed  Google Scholar 

  141. Naranjo T, Orellana J (1984) Meiotic behaviour of chromosomes 1R, 2R and 5R in autotetraploid rye. Chromosoma 89:143–150

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants AGL2015-67349-P and AGL2015-64833-R from Dirección General de Investigación Científica y Técnica, Ministerio de Economía y Competitividad of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás Naranjo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Prieto, P., Naranjo, T. (2020). Analytical Methodology of Meiosis in Autopolyploid and Allopolyploid Plants. In: Pradillo, M., Heckmann, S. (eds) Plant Meiosis. Methods in Molecular Biology, vol 2061. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9818-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9818-0_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9817-3

  • Online ISBN: 978-1-4939-9818-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics