Skip to main content

oHSV Genome Editing by Means of galK Recombineering

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2060))

Abstract

Since the cloning of the herpes simplex virus (HSV) genome as BAC (bacterial artificial chromosome), the genetic engineering of the viral genome has become readily feasible. The advantage is that the modification of the animal virus genome is carried out in bacteria, with no replication or production of viral progeny, and is separated from the reconstitution or regeneration of the recombinant virus in mammalian cells. This allows an easy engineering of essential genes, as well. Many technologies have been developed for herpesvirus BAC engineering. In our hands the most powerful is galK recombineering that exploits a single marker (galK) for positive and negative selection and PCR amplicons for seamless modification in the desired genome locus. Here we describe the engineering of the HSV recombinant BAC 115 by the insertion of a heterologous cassette for the expression of murine interleukin 12 (mIL12) in the intergenic sequence between US1 and US2 ORFs.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Martuza RL, Malick A, Markert JM, Ruffner KL, Coen DM (1991) Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252(5007):854–856

    Article  CAS  Google Scholar 

  2. Chambers R, Gillespie GY, Soroceanu L, Andreansky S, Chatterjee S, Chou J, Roizman B, Whitley RJ (1995) Comparison of genetically engineered herpes simplex viruses for the treatment of brain tumors in a scid mouse model of human malignant glioma. Proc Natl Acad Sci U S A 92(5):1411–1415

    Article  CAS  Google Scholar 

  3. Markert JM, Gillespie GY, Weichselbaum RR, Roizman B, Whitley RJ (2000) Genetically engineered HSV in the treatment of glioma: a review. Rev Med Virol 10(1):17–30

    Article  CAS  Google Scholar 

  4. Campadelli-Fiume G, De Giovanni C, Gatta V, Nanni P, Lollini PL, Menotti L (2011) Rethinking herpes simplex virus: the way to oncolytic agents. Rev Med Virol 21(4):213–226

    Article  CAS  Google Scholar 

  5. Hu JC, Coffin RS, Davis CJ, Graham NJ, Groves N, Guest PJ, Harrington KJ, James ND, Love CA, McNeish I, Medley LC, Michael A, Nutting CM, Pandha HS, Shorrock CA, Simpson J, Steiner J, Steven NM, Wright D, Coombes RC (2006) A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res 12(22):6737–6747

    Article  CAS  Google Scholar 

  6. Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, Delman KA, Spitler LE, Puzanov I, Agarwala SS, Milhem M, Cranmer L, Curti B, Lewis K, Ross M, Guthrie T, Linette GP, Daniels GA, Harrington K, Middleton MR, Miller WH Jr, Zager JS, Ye Y, Yao B, Li A, Doleman S, VanderWalde A, Gansert J, Coffin RS (2015) Talimogene Laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 33(25):2780–2788

    Article  CAS  Google Scholar 

  7. Ledford H (2015) Cancer-fighting viruses win approval. Nature 526(7575):622–623

    Article  CAS  Google Scholar 

  8. O’Connor M, Peifer M, Bender W (1989) Construction of large DNA segments in Escherichia coli. Science 244(4910):1307–1312

    Article  Google Scholar 

  9. Messerle M, Crnkovic I, Hammerschmidt W, Ziegler H, Koszinowski UH (1997) Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci U S A 94(26):14759–14763

    Article  CAS  Google Scholar 

  10. Saeki Y, Ichikawa T, Saeki A, Chiocca EA, Tobler K, Ackermann M, Breakefield XO, Fraefel C (1998) Herpes simplex virus type 1 DNA amplified as bacterial artificial chromosome in Escherichia coli: rescue of replication-competent virus progeny and packaging of amplicon vectors. Hum Gene Ther 9(18):2787–2794

    Article  CAS  Google Scholar 

  11. Horsburgh BC, Hubinette MM, Qiang D, MacDonald ML, Tufaro F (1999) Allele replacement: an application that permits rapid manipulation of herpes simplex virus type 1 genomes. Gene Ther 6(5):922–930

    Article  CAS  Google Scholar 

  12. Tanaka M, Kagawa H, Yamanashi Y, Sata T, Kawaguchi Y (2003) Construction of an excisable bacterial artificial chromosome containing a full-length infectious clone of herpes simplex virus type 1: viruses reconstituted from the clone exhibit wild-type properties in vitro and in vivo. J Virol 77(2):1382–1391

    Article  CAS  Google Scholar 

  13. Nagel CH, Dohner K, Fathollahy M, Strive T, Borst EM, Messerle M, Sodeik B (2008) Nuclear egress and envelopment of herpes simplex virus capsids analyzed with dual-color fluorescence HSV1(17+). J Virol 82(6):3109–3124. https://doi.org/10.1128/JVI.02124-07

    Article  CAS  PubMed  Google Scholar 

  14. Nagel CH, Pohlmann A, Sodeik B (2014) Construction and characterization of bacterial artificial chromosomes (BACs) containing herpes simplex virus full-length genomes. Methods Mol Biol 1144:43–62. https://doi.org/10.1007/978-1-4939-0428-0_4

    Article  PubMed  Google Scholar 

  15. Borst EM, Hahn G, Koszinowski UH, Messerle M (1999) Cloning of the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome in Escherichia coli: a new approach for construction of HCMV mutants. J Virol 73(10):8320–8329

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wagner M, Koszinowski UH (2004) Mutagenesis of viral BACs with linear PCR fragments (ET recombination). Methods Mol Biol 256:257–268

    CAS  PubMed  Google Scholar 

  17. Menotti L, Cerretani A, Hengel H, Campadelli-Fiume G (2008) Construction of a fully retargeted herpes simplex virus 1 recombinant capable of entering cells solely via human epidermal growth factor receptor 2. J Virol 20(October):10153–10161

    Article  Google Scholar 

  18. Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG (2005) Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33(4):e36

    Article  Google Scholar 

  19. Menotti L, Avitabile E, Gatta V, Malatesta P, Petrovic B, Campadelli-Fiume G (2018) HSV as a platform for the generation of retargeted, armed, and reporter-expressing oncolytic viruses. Viruses 10(7):E352

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by European Research Council (ERC) Advanced Grant number 340060, VII framework program to G.C.-F., by RFO (University of Bologna) to L.M. and T.G, and by Fondi Pallotti to T.G.

Competing interests: G.C.-F. owns shares in Nouscom Srl. B.P. is currently an employee of Nouscom Srl. G.C.-F. and L.M. receive equity payments from Amgen. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Campadelli-Fiume .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Menotti, L. et al. (2020). oHSV Genome Editing by Means of galK Recombineering. In: Diefenbach, R., Fraefel, C. (eds) Herpes Simplex Virus . Methods in Molecular Biology, vol 2060. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9814-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9814-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9813-5

  • Online ISBN: 978-1-4939-9814-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics