Skip to main content

The Use of Microfluidic Neuronal Devices to Study the Anterograde Axonal Transport of Herpes Simplex Virus-1

  • Protocol
  • First Online:
Herpes Simplex Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2060))

Abstract

Understanding how herpes simplex virus-1 (HSV-1) interacts with different parts of the neuron is fundamental in understanding the mechanisms behind HSV-1 transport during primary and recurrent infections. In this chapter, we describe a unique neuronal culture system that is capable of compartmentalizing neuronal cell bodies from their axons to study the transport of HSV-1 along axons. The ability to separate neuronal cell bodies and axons provides a unique model to investigate the mechanisms used by HSV-1 for viral transport, assembly, and exit from different parts of the neuron.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miranda-Saksena M, Denes CE, Diefenbach RJ et al (2018) Infection and transport of herpes simplex virus type 1 in neurons: role of the cytoskeleton. Viruses 10:e92

    Article  Google Scholar 

  2. Denes CE, Miranda Saksena M, Cunningham AL et al (2018) Cytoskeletons in the closet: subversion in alphaherpesvirus infections. Viruses 10:e79

    Article  Google Scholar 

  3. Taylor AM, Rhee SW, Tu CH et al (2003) Microfluidic multicompartment device for neuroscience research. Langmuir 19:1551–1556

    Article  CAS  Google Scholar 

  4. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  CAS  Google Scholar 

  5. Taylor AM, Rhee SW, Jeon NL (2006) Microfluidic chambers for cell migration and neuroscience research. In: Microfluidic techniques: reviews and protocols. Humana Press, Totawa, NJ

    Google Scholar 

  6. Liu WW, Goodhouse J, Jeon NL et al (2008) A microfluidic chamber for analysis of neuron-to-cell spread and axonal transport of an alpha-herpesvirus. PLoS One 3:e2382

    Article  Google Scholar 

  7. Howard PW, Howard TL, Johnson DC (2013) Herpes simplex virus membrane proteins gE/gI and US9 act cooperatively to promote transport of capsids and glycoproteins from neuron cell bodies into initial axon segments. J Virol 8:403–441

    Article  Google Scholar 

  8. Howard PW, Wright CC, Howard T et al (2014) Herpes simplex virus gE/gI extracellular domains promote axonal transport and spread from neurons to epithelial cells. J Virol 88:11178–11186

    Article  Google Scholar 

  9. Dohner K, Ramos-Nascimento A, Bialy D et al (2018) Importin alpha1 is required for nuclear import of herpes simplex virus proteins and capsid assembly in fibroblasts and neurons. PLoS Pathog 14:e1006823

    Article  Google Scholar 

  10. Neto E, Leitao L, Sousa DM et al (2016) Compartmentalized microfluidic platforms: the unrivaled breakthrough of in vitro tools for neurobiological research. J Neurosci 36:11573–11584

    Article  CAS  Google Scholar 

  11. Miranda-Saksena M, Boadle RA, Diefenbach RJ et al (2016) Dual role of herpes simplex virus 1 pUS9 in virus anterograde axonal transport and final assembly in growth cones in distal axons. J Virol 90:2653–2663

    Article  CAS  Google Scholar 

  12. Diefenbach RJ, Davis A, Miranda-Saksena M et al (2016) The basic domain of herpes simplex virus 1 pUS9 recruits kinesin-1 to facilitate egress from neurons. J Virol 90:2102–2111

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian National Health and Medical Research Grants (APP1069193 and APP1130512).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Miranda-Saksena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Danastas, K., Cunningham, A.L., Miranda-Saksena, M. (2020). The Use of Microfluidic Neuronal Devices to Study the Anterograde Axonal Transport of Herpes Simplex Virus-1. In: Diefenbach, R., Fraefel, C. (eds) Herpes Simplex Virus . Methods in Molecular Biology, vol 2060. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9814-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9814-2_25

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9813-5

  • Online ISBN: 978-1-4939-9814-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics