Skip to main content

Vaccines for Herpes Simplex: Recent Progress Driven by Viral and Adjuvant Immunology

  • Protocol
  • First Online:
Herpes Simplex Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2060))

Abstract

Herpes simplex viruses (HSV) types 1 and 2 are ubiquitous. They both cause genital herpes, occasionally severe disease in the immunocompromised, and facilitate much HIV acquisition globally. Despite more than 60 years of research, there is no licensed prophylactic HSV vaccine and some doubt as to whether this can be achieved. Nevertheless, a previous HSV vaccine candidate did have partial success in preventing genital herpes and HSV acquisition and another immunotherapeutic candidate reduced viral shedding and recurrent lesions, inspiring further research. However, the entry pathway of HSV into the anogenital mucosa and the subsequent cascade of immune responses need further elucidation so that these responses could be mimicked or improved by a vaccine, to prevent viral entry and colonization of the neuronal ganglia. For an effective novel vaccine against genital herpes the choice of antigen and adjuvant may be critical. The incorporation of adjuvants of the vaccine candidates in the past, may account for their partial efficacy. It is likely that they can be improved by understanding the mechanisms of immune responses elicited by different adjuvants and comparing these to natural immune responses. Here we review the history of vaccines for HSV, those in development and compare them to successful vaccines for chicken pox or herpes zoster. We also review what is known of the natural immune control of herpes lesions, via interacting innate immunity and CD4 and CD8 T cells and the lessons they provide for development of new, more effective vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schiffer JT, Swan D, Corey L et al (2013) Rapid viral expansion and short drug half-life explain the incomplete effectiveness of current Herpes Simplex Virus-2 directed antiviral agents. Antimicrob Agents Chemother 57:5820–5829. https://doi.org/10.1128/AAC.01114-13

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gottlieb SL, Giersing BK, Hickling J et al (2017) Meeting report: Initial World Health Organization consultation on herpes simplex virus (HSV) vaccine preferred product characteristics. Vaccine. https://doi.org/10.1016/j.vaccine.2017.10.084

  3. 2011–2020 GVAP (2012) Global vaccine action plan 2011–2020 [online]. https://www.who.int/immunization/global_vaccine_action_plan/GVAP_doc_2011_2020/en/

  4. Freeman EE, Weiss HA, Glynn JR et al (2006) Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. AIDS 20(1):73–83

    Article  PubMed  Google Scholar 

  5. Looker KJ, Elmes JAR, Gottlieb SL et al (2017) Effect of HSV-2 infection on subsequent HIV acquisition: an updated systematic review and meta-analysis. Lancet Infect Dis 17(12):1303–1316. https://doi.org/10.1016/s1473-3099(17)30405-x

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bradley J, Floyd S, Piwowar-Manning E et al (2018) Sexually transmitted bedfellows: exquisite association between HIV and herpes simplex virus type 2 in 21 communities in southern Africa in the HIV prevention trials network 071 (PopART) study. J Infect Dis 218(3):443–452. https://doi.org/10.1093/infdis/jiy178

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wald A, Link K (2002) Risk of human immunodeficiency virus infection in herpes simplex virus type 2-seropositive persons: a meta-analysis. J Infect Dis 185(1):45–52. https://doi.org/10.1086/338231

    Article  PubMed  Google Scholar 

  8. Omori R, Nagelkerke N, Abu-Raddad LJ (2018) HIV and herpes simplex virus type 2 epidemiological synergy: misguided observational evidence? A modelling study. Sex Transm Infect 94(5):372–376. https://doi.org/10.1136/sextrans-2017-053336

    Article  PubMed  Google Scholar 

  9. Reynolds SJ, Risbud AR, Shepherd ME et al (2003) Recent herpes simplex virus type 2 infection and the risk of human immunodeficiency virus type 1 acquisition in India. J Infect Dis 187(10):1513–1521. https://doi.org/10.1086/368357

    Article  PubMed  Google Scholar 

  10. Spicknall IH, Looker KJ, Gottlieb SL et al (2018) Review of mathematical models of HSV-2 vaccination: implications for vaccine development. Vaccine. https://doi.org/10.1016/j.vaccine.2018.02.067

  11. Corey L, Langenberg AG, Ashley R et al (1999) Recombinant glycoprotein vaccine for the prevention of genital HSV-2 infection: two randomized controlled trials. Chiron HSV Vaccine Study Group. JAMA 282(4):331–340

    Article  CAS  PubMed  Google Scholar 

  12. Stanberry LR, Spruance SL, Cunningham AL et al (2002) Glycoprotein-D-adjuvant vaccine to prevent genital herpes. N Engl J Med 347(21):1652–1661. https://doi.org/10.1056/NEJMoa011915

    Article  CAS  PubMed  Google Scholar 

  13. Mikloska Z, Cunningham AL (1998) Herpes simplex virus type 1 glycoproteins gB, gC and gD are major targets for CD4 T-lymphocyte cytotoxicity in HLA-DR expressing human epidermal keratinocytes. J Gen Virol 79. (Pt 2:353–361

    Article  CAS  PubMed  Google Scholar 

  14. Belshe RB, Leone PA, Bernstein DI et al (2012) Efficacy results of a trial of a herpes simplex vaccine. N Engl J Med 366(1):34–43. https://doi.org/10.1056/NEJMoa1103151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lamers SL, Newman RM, Laeyendecker O et al (2015) Global diversity within and between human herpesvirus 1 and 2 glycoproteins. J Virol 89(16):8206–8218. https://doi.org/10.1128/jvi.01302-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Belshe RB, Heineman TC, Bernstein DI et al (2014) Correlate of immune protection against HSV-1 genital disease in vaccinated women. J Infect Dis 209(6):828–836. https://doi.org/10.1093/infdis/jit651

    Article  CAS  PubMed  Google Scholar 

  17. Bernard MC, Barban V, Pradezynski F et al (2015) Immunogenicity, protective efficacy, and non-replicative status of the HSV-2 vaccine candidate HSV529 in mice and guinea pigs. PLoS One 10(4):e0121518. https://doi.org/10.1371/journal.pone.0121518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oxman MN, Levin MJ, Johnson GR et al (2005) A vaccine to prevent herpes zoster and postherpetic neuralgia in older adults. N Engl J Med 352(22):2271–2284. https://doi.org/10.1056/NEJMoa051016

    Article  CAS  PubMed  Google Scholar 

  19. Morrison VA, Johnson GR, Schmader KE et al (2015) Long-term persistence of zoster vaccine efficacy. Clin Infect Dis 60(6):900–909. https://doi.org/10.1093/cid/ciu918

    Article  PubMed  Google Scholar 

  20. Cunningham AL, Heineman TC, Lal H et al (2018) Immune responses to a recombinant glycoprotein E herpes zoster vaccine in adults aged >/=50 years. J Infect Dis 217:1750. https://doi.org/10.1093/infdis/jiy095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lal H, Cunningham AL, Godeaux O et al (2015) Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N Engl J Med 372(22):2087–2096. https://doi.org/10.1056/NEJMoa1501184

    Article  PubMed  Google Scholar 

  22. Schwarz TF, Volpe S, Catteau G et al (2018) Persistence of immune response to an adjuvanted varicella-zoster virus subunit vaccine for up to year nine in older adults. Hum Vaccin Immunother 14(6):1370–1377. https://doi.org/10.1080/21645515.2018.1442162

    Article  PubMed  PubMed Central  Google Scholar 

  23. Didierlaurent AM, Laupeze B, Di Pasquale A et al (2017) Adjuvant system AS01: helping to overcome the challenges of modern vaccines. Expert Rev Vaccines 16(1):55–63. https://doi.org/10.1080/14760584.2016.1213632

    Article  CAS  PubMed  Google Scholar 

  24. Leroux-Roels I, Leroux-Roels G, Clement F et al (2012) A phase 1/2 clinical trial evaluating safety and immunogenicity of a varicella zoster glycoprotein e subunit vaccine candidate in young and older adults. J Infect Dis 206(8):1280–1290. https://doi.org/10.1093/infdis/jis497

    Article  CAS  PubMed  Google Scholar 

  25. Weinberg A, Kroehl ME, Johnson MJ et al (2018) Comparative immune responses to licensed herpes zoster vaccines. J Infect Dis 218(Suppl_2):S81–S87. https://doi.org/10.1093/infdis/jiy383

    Article  PubMed  Google Scholar 

  26. Levin MJ, Kroehl ME, Johnson MJ et al (2018) Th1 memory differentiates recombinant from live herpes zoster vaccines. J Clin Invest 128(10):4429–4440. https://doi.org/10.1172/jci121484

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mikloska Z, Kesson AM, Penfold ME et al (1996) Herpes simplex virus protein targets for CD4 and CD8 lymphocyte cytotoxicity in cultured epidermal keratinocytes treated with interferon-gamma. J Infect Dis 173(1):7–17

    Article  CAS  PubMed  Google Scholar 

  28. Arvin A, Abendroth A (2007) VZV: immunobiology and host response. In: Arvin A, Campadelli-Fiume G, Mocarski E et al (eds) Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, Cambridge, p 2007

    Chapter  Google Scholar 

  29. Mori I, Nishiyama Y (2005) Herpes simplex virus and varicella-zoster virus: why do these human alphaherpesviruses behave so differently from one another? Rev Med Virol 15(6):393–406. https://doi.org/10.1002/rmv.478

    Article  CAS  PubMed  Google Scholar 

  30. Koelle DM, Corey L (2008) Herpes simplex: insights on pathogenesis and possible vaccines. Annu Rev Med 59:381–395. https://doi.org/10.1146/annurev.med.59.061606.095540

    Article  CAS  PubMed  Google Scholar 

  31. Heath WR, Carbone FR (2013) The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nat Immunol 14(10):978–985. https://doi.org/10.1038/ni.2680

    Article  CAS  PubMed  Google Scholar 

  32. Albanesi C, Scarponi C, Giustizieri ML et al (2005) Keratinocytes in inflammatory skin diseases. Curr Drug Targets Inflamm Allergy 4(3):329–334

    Article  CAS  PubMed  Google Scholar 

  33. Kuo IH, Yoshida T, De Benedetto A et al (2013) The cutaneous innate immune response in patients with atopic dermatitis. J Allergy Clin Immunol 131(2):266–278. https://doi.org/10.1016/j.jaci.2012.12.1563

    Article  CAS  PubMed  Google Scholar 

  34. Strittmatter GE, Sand J, Sauter M et al (2016) IFN-gamma primes keratinocytes for HSV-1-induced inflammasome activation. J Invest Dermatol 136(3):610–620. https://doi.org/10.1016/j.jid.2015.12.022

    Article  CAS  PubMed  Google Scholar 

  35. Aoki R, Kawamura T, Goshima F et al (2016) The Alarmin IL-33 derived from HSV-2-infected keratinocytes triggers mast cell-mediated antiviral innate immunity. J Invest Dermatol 136(6):1290–1292. https://doi.org/10.1016/j.jid.2016.01.030

    Article  CAS  PubMed  Google Scholar 

  36. Cunningham AL, Noble JR (1989) Role of keratinocytes in human recurrent herpetic lesions. Ability to present herpes simplex virus antigen and act as targets for T lymphocyte cytotoxicity in vitro. J Clin Invest 83(2):490–496. https://doi.org/10.1172/jci113908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nickoloff BJ, Turka LA (1994) Immunological functions of non-professional antigen-presenting cells: new insights from studies of T-cell interactions with keratinocytes. Immunol Today 15(10):464–469. https://doi.org/10.1016/0167-5699(94)90190-2

    Article  CAS  PubMed  Google Scholar 

  38. Takaoka A, Yanai H (2006) Interferon signalling network in innate defence. Cell Microbiol 8(6):907–922. https://doi.org/10.1111/j.1462-5822.2006.00716.x

    Article  CAS  PubMed  Google Scholar 

  39. Chan T, Barra NG, Lee AJ et al (2011) Innate and adaptive immunity against herpes simplex virus type 2 in the genital mucosa. J Reprod Immunol 88(2):210–218. https://doi.org/10.1016/j.jri.2011.01.001

    Article  CAS  PubMed  Google Scholar 

  40. Donaghy H, Bosnjak L, Harman AN et al (2009) Role for plasmacytoid dendritic cells in the immune control of recurrent human herpes simplex virus infection. J Virol 83(4):1952–1961. https://doi.org/10.1128/jvi.01578-08

    Article  CAS  PubMed  Google Scholar 

  41. Ashkar AA, Rosenthal KL (2003) Interleukin-15 and natural killer and NKT cells play a critical role in innate protection against genital herpes simplex virus type 2 infection. J Virol 77(18):10168–10171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kawakami Y, Ando T, Lee JR et al (2017) Defective natural killer cell activity in a mouse model of eczema herpeticum. J Allergy Clin Immunol 139(3):997–1006.e1010. https://doi.org/10.1016/j.jaci.2016.06.034

    Article  CAS  PubMed  Google Scholar 

  43. Thapa M, Kuziel WA, Carr DJ (2007) Susceptibility of CCR5-deficient mice to genital herpes simplex virus type 2 is linked to NK cell mobilization. J Virol 81(8):3704–3713. https://doi.org/10.1128/jvi.02626-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Biron CA, Byron KS, Sullivan JL (1989) Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med 320(26):1731–1735. https://doi.org/10.1056/nejm198906293202605

    Article  CAS  PubMed  Google Scholar 

  45. Dalloul A, Oksenhendler E, Chosidow O et al (2004) Severe herpes virus (HSV-2) infection in two patients with myelodysplasia and undetectable NK cells and plasmacytoid dendritic cells in the blood. J Clin Virol 30(4):329–336. https://doi.org/10.1016/j.jcv.2003.11.014

    Article  PubMed  Google Scholar 

  46. Koelle DM, Frank JM, Johnson ML et al (1998) Recognition of herpes simplex virus type 2 tegument proteins by CD4 T cells infiltrating human genital herpes lesions. J Virol 72(9):7476–7483

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim M, Osborne NR, Zeng W et al (2012) Herpes simplex virus antigens directly activate NK cells via TLR2, thus facilitating their presentation to CD4 T lymphocytes. J Immunol 188(9):4158–4170. https://doi.org/10.4049/jimmunol.1103450

    Article  CAS  PubMed  Google Scholar 

  48. Milligan GN, Bernstein DI (1997) Interferon-gamma enhances resolution of herpes simplex virus type 2 infection of the murine genital tract. Virology 229(1):259–268. https://doi.org/10.1006/viro.1997.8441

    Article  CAS  PubMed  Google Scholar 

  49. Gill N, Ashkar AA (2009) Overexpression of interleukin-15 compromises CD4-dependent adaptive immune responses against herpes simplex virus 2. J Virol 83(2):918–926. https://doi.org/10.1128/jvi.01282-08

    Article  CAS  PubMed  Google Scholar 

  50. Cunningham AL, Turner RR, Miller AC et al (1985) Evolution of recurrent herpes simplex lesions. An immunohistologic study. J Clin Invest 75(1):226–233. https://doi.org/10.1172/jci111678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Eberl G, Colonna M, Di Santo JP et al (2015) Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology. Science 348(6237):aaa6566. https://doi.org/10.1126/science.aaa6566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang Q, Bhandoola A (2016) The development of adult innate lymphoid cells. Curr Opin Immunol 39:114–120. https://doi.org/10.1016/j.coi.2016.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ashley RL, Corey L, Dalessio J et al (1994) Protein-specific cervical antibody responses to primary genital herpes simplex virus type 2 infections. J Infect Dis 170(1):20–26

    Article  CAS  PubMed  Google Scholar 

  54. Gallichan WS, Rosenthal KL (1998) Long-term immunity and protection against herpes simplex virus type 2 in the murine female genital tract after mucosal but not systemic immunization. J Infect Dis 177(5):1155–1161

    Article  CAS  PubMed  Google Scholar 

  55. Parr EL, Parr MB (1997) Immunoglobulin G is the main protective antibody in mouse vaginal secretions after vaginal immunization with attenuated herpes simplex virus type 2. J Virol 71(11):8109–8115

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Halford WP, Geltz J, Messer RJ et al (2015) Antibodies are required for complete vaccine-induced protection against herpes simplex virus 2. PLoS One 10(12):e0145228. https://doi.org/10.1371/journal.pone.0145228

    Article  PubMed  PubMed Central  Google Scholar 

  57. Halford WP, Geltz J, Gershburg E (2013) Pan-HSV-2 IgG antibody in vaccinated mice and guinea pigs correlates with protection against herpes simplex virus 2. PLoS One 8(6):e65523. https://doi.org/10.1371/journal.pone.0065523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McDermott MR, Brais LJ, Evelegh MJ (1990) Mucosal and systemic antiviral antibodies in mice inoculated intravaginally with herpes simplex virus type 2. J Gen Virol 71(Pt 7):1497–1504. https://doi.org/10.1099/0022-1317-71-7-1497

    Article  CAS  PubMed  Google Scholar 

  59. Morrison LA, Zhu L, Thebeau LG (2001) Vaccine-induced serum immunoglobin contributes to protection from herpes simplex virus type 2 genital infection in the presence of immune T cells. J Virol 75(3):1195–1204. https://doi.org/10.1128/jvi.75.3.1195-1204.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dudley KL, Bourne N, Milligan GN (2000) Immune protection against HSV-2 in B-cell-deficient mice. Virology 270(2):454–463. https://doi.org/10.1006/viro.2000.0298

    Article  CAS  PubMed  Google Scholar 

  61. Harandi AM, Svennerholm B, Holmgren J et al (2001) Differential roles of B cells and IFN-gamma-secreting CD4(+) T cells in innate and adaptive immune control of genital herpes simplex virus type 2 infection in mice. J Gen Virol 82(Pt 4):845–853. https://doi.org/10.1099/0022-1317-82-4-845

    Article  CAS  PubMed  Google Scholar 

  62. Awasthi S, Hook LM, Shaw CE et al (2017) An HSV-2 trivalent vaccine is immunogenic in rhesus macaques and highly efficacious in guinea pigs. PLoS Pathog 13(1):e1006141. https://doi.org/10.1371/journal.ppat.1006141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Awasthi S, Hook LM, Shaw CE et al (2017) A trivalent subunit antigen glycoprotein vaccine as immunotherapy for genital herpes in the guinea pig genital infection model. Hum Vaccin Immunother 13(12):2785–2793. https://doi.org/10.1080/21645515.2017.1323604

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mikloska Z, Sanna PP, Cunningham AL (1999) Neutralizing antibodies inhibit axonal spread of herpes simplex virus type 1 to epidermal cells in vitro. J Virol 73(7):5934–5944

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Looker KJ, Magaret AS, May MT et al (2017) First estimates of the global and regional incidence of neonatal herpes infection. Lancet Glob Health 5(3):e300–e309. https://doi.org/10.1016/s2214-109x(16)30362-x

    Article  PubMed  PubMed Central  Google Scholar 

  66. Prober CG, Sullender WM, Yasukawa LL et al (1987) Low risk of herpes simplex virus infections in neonates exposed to the virus at the time of vaginal delivery to mothers with recurrent genital herpes simplex virus infections. N Engl J Med 316(5):240–244. https://doi.org/10.1056/nejm198701293160503

    Article  CAS  PubMed  Google Scholar 

  67. Brown ZA, Wald A, Morrow RA et al (2003) Effect of serologic status and cesarean delivery on transmission rates of herpes simplex virus from mother to infant. JAMA 289(2):203–209

    Article  PubMed  Google Scholar 

  68. Allen UD, Robinson JL (2014) Prevention and management of neonatal herpes simplex virus infections. Paediatr Child Health 19(4):201–212

    Article  PubMed  PubMed Central  Google Scholar 

  69. Dancis J, Lind J, Oratz M et al (1961) Placental transfer of proteins in human gestation. Am J Obstet Gynecol 82:167–171

    Article  CAS  PubMed  Google Scholar 

  70. Evans IA, Jones CA (2002) Maternal immunization with a herpes simplex virus type 2 replication-defective virus reduces visceral dissemination but not lethal encephalitis in newborn mice after oral challenge. J Infect Dis 185(11):1550–1560. https://doi.org/10.1086/340572

    Article  PubMed  Google Scholar 

  71. Jiang Y, Patel CD, Manivanh R et al (2017) Maternal antiviral immunoglobulin accumulates in neural tissue of neonates to prevent HSV neurological disease. mBio 8(4). https://doi.org/10.1128/mBio.00678-17

  72. Kao C, Burn C, Jacobs WR Jr et al (2017) Maternal immunization with a single-cycle herpes simplex virus (HSV) candidate vaccine, ΔgD-2, protects neonatal mice from lethal viral challenge. Open Forum Infect Dis 4(Suppl 1):S22. https://doi.org/10.1093/ofid/ofx162.056

    Article  PubMed Central  Google Scholar 

  73. Marchant A, Sadarangani M, Garand M et al (2017) Maternal immunisation: collaborating with mother nature. Lancet Infect Dis 17(7):e197–e208. https://doi.org/10.1016/s1473-3099(17)30229-3

    Article  PubMed  Google Scholar 

  74. Cella M, Scheidegger D, Palmer-Lehmann K et al (1996) Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 184(2):747–752

    Article  CAS  PubMed  Google Scholar 

  75. Murphy KM, Stockinger B (2010) Effector T cell plasticity: flexibility in the face of changing circumstances. Nat Immunol 11(8):674–680. https://doi.org/10.1038/ni.1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Iijima N, Linehan MM, Zamora M et al (2008) Dendritic cells and B cells maximize mucosal Th1 memory response to herpes simplex virus. J Exp Med 205(13):3041–3052. https://doi.org/10.1084/jem.20082039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bourne N, Perry CL, Banasik BN et al (2019) Increased frequency of virus shedding by herpes simplex virus 2-infected guinea pigs in the absence of CD4(+) T lymphocytes. J Virol 93(4). https://doi.org/10.1128/jvi.01721-18

  78. Egan KP, Wu S, Wigdahl B et al (2013) Immunological control of herpes simplex virus infections. J Neurovirol 19(4):328–345. https://doi.org/10.1007/s13365-013-0189-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ouwendijk WJ, Laing KJ, Verjans GM et al (2013) T-cell immunity to human alphaherpesviruses. Curr Opin Virol 3(4):452–460. https://doi.org/10.1016/j.coviro.2013.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. van Velzen M, Jing L, Osterhaus AD et al (2013) Local CD4 and CD8 T-cell reactivity to HSV-1 antigens documents broad viral protein expression and immune competence in latently infected human trigeminal ganglia. PLoS Pathog 9(8):e1003547. https://doi.org/10.1371/journal.ppat.1003547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Decman V, Kinchington PR, Harvey SA et al (2005) Gamma interferon can block herpes simplex virus type 1 reactivation from latency, even in the presence of late gene expression. J Virol 79(16):10339–10347. https://doi.org/10.1128/jvi.79.16.10339-10347.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Knickelbein JE, Khanna KM, Yee MB et al (2008) Noncytotoxic lytic granule-mediated CD8+ T cell inhibition of HSV-1 reactivation from neuronal latency. Science 322(5899):268–271. https://doi.org/10.1126/science.1164164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nakanishi Y, Lu B, Gerard C et al (2009) CD8(+) T lymphocyte mobilization to virus-infected tissue requires CD4(+) T-cell help. Nature 462(7272):510–513. https://doi.org/10.1038/nature08511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhu J, Hladik F, Woodward A et al (2009) Persistence of HIV-1 receptor-positive cells after HSV-2 reactivation is a potential mechanism for increased HIV-1 acquisition. Nat Med 15(8):886–892. https://doi.org/10.1038/nm.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhu J, Peng T, Johnston C et al (2013) Immune surveillance by CD8alphaalpha+ skin-resident T cells in human herpes virus infection. Nature 497(7450):494–497. https://doi.org/10.1038/nature12110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhu J, Koelle DM, Cao J et al (2007) Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J Exp Med 204(3):595–603. https://doi.org/10.1084/jem.20061792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Posavad CM, Zhao L, Dong L et al (2017) Enrichment of herpes simplex virus type 2 (HSV-2) reactive mucosal T cells in the human female genital tract. Mucosal Immunol 10(5):1259–1269. https://doi.org/10.1038/mi.2016.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Peng T, Zhu J, Phasouk K et al (2012) An effector phenotype of CD8+ T cells at the junction epithelium during clinical quiescence of herpes simplex virus 2 infection. J Virol 86(19):10587–10596. https://doi.org/10.1128/jvi.01237-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schiffer JT, Swan DA, Roychoudhury P et al (2018) A fixed spatial structure of CD8(+) T cells in tissue during chronic HSV-2 infection. J Immunol 201(5):1522–1535. https://doi.org/10.4049/jimmunol.1800471

    Article  CAS  PubMed  Google Scholar 

  90. Diaz GA, Koelle DM (2006) Human CD4+ CD25 high cells suppress proliferative memory lymphocyte responses to herpes simplex virus type 2. J Virol 80(16):8271–8273. https://doi.org/10.1128/jvi.00656-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fernandez MA, Puttur FK, Wang YM et al (2008) T regulatory cells contribute to the attenuated primary CD8+ and CD4+ T cell responses to herpes simplex virus type 2 in neonatal mice. J Immunol 180(3):1556–1564

    Article  CAS  PubMed  Google Scholar 

  92. Fernandez MA, Yu U, Zhang G et al (2013) Treg depletion attenuates the severity of skin disease from ganglionic spread after HSV-2 flank infection. Virology 447(1–2):9–20. https://doi.org/10.1016/j.virol.2013.08.027

    Article  CAS  PubMed  Google Scholar 

  93. Milman N, Zhu J, Johnston C et al (2016) In situ detection of regulatory T cells in human genital herpes simplex virus type 2 (HSV-2) reactivation and their influence on spontaneous HSV-2 reactivation. J Infect Dis 214(1):23–31. https://doi.org/10.1093/infdis/jiw091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bos JD, Teunissen MB, Cairo I et al (1990) T-cell receptor gamma delta bearing cells in normal human skin. J Invest Dermatol 94(1):37–42

    Article  CAS  PubMed  Google Scholar 

  95. Sciammas R, Kodukula P, Tang Q et al (1997) T cell receptor-gamma/delta cells protect mice from herpes simplex virus type 1-induced lethal encephalitis. J Exp Med 185(11):1969–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Puttur FK, Fernandez MA, White R et al (2010) Herpes simplex virus infects skin gamma delta T cells before Langerhans cells and impedes migration of infected Langerhans cells by inducing apoptosis and blocking E-cadherin downregulation. J Immunol 185(1):477–487. https://doi.org/10.4049/jimmunol.0904106

    Article  CAS  PubMed  Google Scholar 

  97. Kashem SW, Haniffa M, Kaplan DH (2017) Antigen-presenting cells in the skin. Annu Rev Immunol 35:469–499. https://doi.org/10.1146/annurev-immunol-051116-052215

    Article  CAS  PubMed  Google Scholar 

  98. Bosnjak L, Miranda-Saksena M, Koelle DM et al (2005) Herpes simplex virus infection of human dendritic cells induces apoptosis and allows cross-presentation via uninfected dendritic cells. J Immunol 174(4):2220–2227

    Article  CAS  PubMed  Google Scholar 

  99. Mikloska Z, Bosnjak L, Cunningham AL (2001) Immature monocyte-derived dendritic cells are productively infected with herpes simplex virus type 1. J Virol 75(13):5958–5964. https://doi.org/10.1128/jvi.75.13.5958-5964.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sprecher E, Becker Y (1986) Skin Langerhans cells play an essential role in the defense against HSV-1 infection. Arch Virol 91(3–4):341–349

    Article  CAS  PubMed  Google Scholar 

  101. Allan RS, Smith CM, Belz GT et al (2003) Epidermal viral immunity induced by CD8alpha+ dendritic cells but not by Langerhans cells. Science 301(5641):1925–1928. https://doi.org/10.1126/science.1087576

    Article  CAS  PubMed  Google Scholar 

  102. Bedoui S, Whitney PG, Waithman J et al (2009) Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat Immunol 10(5):488–495. https://doi.org/10.1038/ni.1724

    Article  CAS  PubMed  Google Scholar 

  103. Zhao X, Deak E, Soderberg K et al (2003) Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Th1 responses to herpes simplex virus-2. J Exp Med 197(2):153–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kim M, Truong NR, James V et al (2015) Relay of herpes simplex virus between Langerhans cells and dermal dendritic cells in human skin. PLoS Pathog 11(4):e1004812. https://doi.org/10.1371/journal.ppat.1004812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Guilliams M, Ginhoux F, Jakubzick C et al (2014) Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 14(8):571–578. https://doi.org/10.1038/nri3712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Theisen D, Murphy K (2017) The role of cDC1s in vivo: CD8 T cell priming through cross-presentation. F1000Research 6:98. https://doi.org/10.12688/f1000research.9997.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fehres CM, Bruijns SC, Sotthewes BN et al (2015) Phenotypic and functional properties of human steady state CD14+ and CD1a+ antigen presenting cells and epidermal Langerhans cells. PLoS One 10(11):e0143519. https://doi.org/10.1371/journal.pone.0143519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Haniffa M, Shin A, Bigley V et al (2012) Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 37(1):60–73. https://doi.org/10.1016/j.immuni.2012.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. McGovern N, Schlitzer A, Gunawan M et al (2014) Human dermal CD14(+) cells are a transient population of monocyte-derived macrophages. Immunity 41(3):465–477. https://doi.org/10.1016/j.immuni.2014.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cairns TM, Huang ZY, Gallagher JR et al (2015) Patient-specific neutralizing antibody responses to herpes simplex virus are attributed to epitopes on gD, gB, or both and can be type specific. J Virol 89(18):9213–9231. https://doi.org/10.1128/jvi.01213-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cairns TM, Huang ZY, Whitbeck JC et al (2014) Dissection of the antibody response against herpes simplex virus glycoproteins in naturally infected humans. J Virol 88(21):12612–12622. https://doi.org/10.1128/jvi.01930-14

    Article  PubMed  PubMed Central  Google Scholar 

  112. Berman PW, Gregory T, Crase D et al (1985) Protection from genital herpes simplex virus type 2 infection by vaccination with cloned type 1 glycoprotein D. Science 227(4693):1490–1492

    Article  CAS  PubMed  Google Scholar 

  113. Eisenberg RJ, Long D, Ponce de Leon M et al (1985) Localization of epitopes of herpes simplex virus type 1 glycoprotein D. J Virol 53(2):634–644

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Stanfield BA, Stahl J, Chouljenko VN et al (2014) A single intramuscular vaccination of mice with the HSV-1 VC2 virus with mutations in the glycoprotein K and the membrane protein UL20 confers full protection against lethal intravaginal challenge with virulent HSV-1 and HSV-2 strains. PLoS One 9(10):e109890. https://doi.org/10.1371/journal.pone.0109890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hook LM, Cairns TM, Awasthi S et al (2018) Vaccine-induced antibodies to herpes simplex virus glycoprotein D epitopes involved in virus entry and cell-to-cell spread correlate with protection against genital disease in guinea pigs. PLoS Pathog 14(5):e1007095. https://doi.org/10.1371/journal.ppat.1007095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dropulic L, Wang K, Oestreich M et al (2017) A replication-defective herpes simplex virus (HSV)-2 vaccine, HSV529, is safe and well-tolerated in adults with or without HSV infection and induces significant HSV-2-specific antibody responses in HSV seronegative individuals. Open Forum Infect Dis 4(Suppl 1):S415–S416. https://doi.org/10.1093/ofid/ofx163.1041

    Article  PubMed Central  Google Scholar 

  117. Burn C, Ramsey N, Garforth SJ et al (2018) A herpes simplex virus (HSV)-2 single-cycle candidate vaccine deleted in glycoprotein D protects male mice from lethal skin challenge with clinical isolates of HSV-1 and HSV-2. J Infect Dis 217(5):754–758. https://doi.org/10.1093/infdis/jix628

    Article  CAS  PubMed  Google Scholar 

  118. Petro C, Gonzalez PA, Cheshenko N et al (2015) Herpes simplex type 2 virus deleted in glycoprotein D protects against vaginal, skin and neural disease. eLife 4. https://doi.org/10.7554/eLife.06054

  119. Petro CD, Weinrick B, Khajoueinejad N et al (2016) HSV-2 DeltagD elicits FcgammaR-effector antibodies that protect against clinical isolates. JCI Insight 1(12). https://doi.org/10.1172/jci.insight.88529

  120. Mertz GJ, Ashley R, Burke RL et al (1990) Double-blind, placebo-controlled trial of a herpes simplex virus type 2 glycoprotein vaccine in persons at high risk for genital herpes infection. J Infect Dis 161(4):653–660

    Article  CAS  PubMed  Google Scholar 

  121. Terhune SS, Coleman KT, Sekulovich R et al (1998) Limited variability of glycoprotein gene sequences and neutralizing targets in herpes simplex virus type 2 isolates and stability on passage in cell culture. J Infect Dis 178(1):8–15

    Article  CAS  PubMed  Google Scholar 

  122. Koelle DM, Schomogyi M, McClurkan C et al (2000) CD4 T-cell responses to herpes simplex virus type 2 major capsid protein VP5: comparison with responses to tegument and envelope glycoproteins. J Virol 74(23):11422–11425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kim M, Taylor J, Sidney J et al (2008) Immunodominant epitopes in herpes simplex virus type 2 glycoprotein D are recognized by CD4 lymphocytes from both HSV-1 and HSV-2 seropositive subjects. J Immunol 181(9):6604–6615

    Article  CAS  PubMed  Google Scholar 

  124. Mikloska Z, Ruckholdt M, Ghadiminejad I et al (2000) Monophosphoryl lipid A and QS21 increase CD8 T lymphocyte cytotoxicity to herpes simplex virus-2 infected cell proteins 4 and 27 through IFN-gamma and IL-12 production. J Immunol 164(10):5167–5176

    Article  CAS  PubMed  Google Scholar 

  125. Hosken N, McGowan P, Meier A et al (2006) Diversity of the CD8+ T-cell response to herpes simplex virus type 2 proteins among persons with genital herpes. J Virol 80(11):5509–5515. https://doi.org/10.1128/JVI.02659-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Jing L, Laing KJ, Dong L et al (2016) Extensive CD4 and CD8 T cell cross-reactivity between Alphaherpesviruses. J Immunol 196(5):2205–2218. https://doi.org/10.4049/jimmunol.1502366

    Article  CAS  PubMed  Google Scholar 

  127. Porchia B, Moreno ACR, Ramos RN et al (2017) Herpes simplex virus glycoprotein D targets a specific dendritic cell subset and improves the performance of vaccines to human papillomavirus-associated tumors. Mol Cancer Ther 16(9):1922–1933. https://doi.org/10.1158/1535-7163.Mct-17-0071

    Article  CAS  PubMed  Google Scholar 

  128. Ford E, Li A, Dong L, et al. (2018) Expansion of the tissue based T-cell receptor repertoire is distinct from the PBMC response after immunotherapeutic HSV-2 vaccine. Paper presented at the International Herpesvirus Workshop, Vancouver, BC

    Google Scholar 

  129. Wang K, Goodman KN, Li DY et al (2016) A herpes simplex virus 2 (HSV-2) gD mutant impaired for neural tropism is superior to an HSV-2 gD subunit vaccine to protect animals from challenge with HSV-2. J Virol 90(1):562–574. https://doi.org/10.1128/jvi.01845-15

    Article  CAS  PubMed  Google Scholar 

  130. Shin H, Iwasaki A (2012) A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491(7424):463–467. https://doi.org/10.1038/nature11522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Shin H, Kumamoto Y, Gopinath S et al (2016) CD301b+ dendritic cells stimulate tissue-resident memory CD8+ T cells to protect against genital HSV-2. Nat Commun 7:13346. https://doi.org/10.1038/ncomms13346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ahmed M, Smith DM, Hamouda T et al (2017) A novel nanoemulsion vaccine induces mucosal Interleukin-17 responses and confers protection upon Mycobacterium tuberculosis challenge in mice. Vaccine 35(37):4983–4989. https://doi.org/10.1016/j.vaccine.2017.07.073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. O’Konek JJ, Makidon PE, Landers JJ et al (2015) Intranasal nanoemulsion-based inactivated respiratory syncytial virus vaccines protect against viral challenge in cotton rats. Hum Vaccin Immunother 11(12):2904–2912. https://doi.org/10.1080/21645515.2015.1075680

    Article  PubMed  PubMed Central  Google Scholar 

  134. Bluewillow Biologics (2018) HSV-2 vaccine. Bluewillow Biologics. http://www.bluewillow.com/vaccine-pipeline/hsv-2-vaccine/

  135. Zhang X, Chentoufi AA, Dasgupta G et al (2009) A genital tract peptide epitope vaccine targeting TLR-2 efficiently induces local and systemic CD8+ T cells and protects against herpes simplex virus type 2 challenge. Mucosal Immunol 2(2):129–143. https://doi.org/10.1038/mi.2008.81

    Article  CAS  PubMed  Google Scholar 

  136. Zhang X, Dervillez X, Chentoufi AA et al (2012) Targeting the genital tract mucosa with a lipopeptide/recombinant adenovirus prime/boost vaccine induces potent and long-lasting CD8+ T cell immunity against herpes: importance of MyD88. J Immunol 189(9):4496–4509. https://doi.org/10.4049/jimmunol.1201121

    Article  CAS  PubMed  Google Scholar 

  137. He Q, Mitchell A, Morcol T et al (2002) Calcium phosphate nanoparticles induce mucosal immunity and protection against herpes simplex virus type 2. Clin Diagn Lab Immunol 9(5):1021–1024

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Marrack P, McKee AS, Munks MW (2009) Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol 9(4):287–293. https://doi.org/10.1038/nri2510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Di Pasquale A, Preiss S, Tavares Da Silva F et al (2015) Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccine 3(2):320–343. https://doi.org/10.3390/vaccines3020320

    Article  CAS  Google Scholar 

  140. den Brok MH, Bull C, Wassink M et al (2016) Saponin-based adjuvants induce cross-presentation in dendritic cells by intracellular lipid body formation. Nat Commun 7:13324. https://doi.org/10.1038/ncomms13324

    Article  CAS  Google Scholar 

  141. Flechtner JB, Long D, Larson S et al (2016) Immune responses elicited by the GEN-003 candidate HSV-2 therapeutic vaccine in a randomized controlled dose-ranging phase 1/2a trial. Vaccine 34(44):5314–5320. https://doi.org/10.1016/j.vaccine.2016.09.001

    Article  CAS  PubMed  Google Scholar 

  142. Ferlazzo G, Morandi B (2014) Cross-talks between natural killer cells and distinct subsets of dendritic cells. Front Immunol 5:159. https://doi.org/10.3389/fimmu.2014.00159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Deauvieau F, Ollion V, Doffin AC et al (2015) Human natural killer cells promote cross-presentation of tumor cell-derived antigens by dendritic cells. Int J Cancer 136(5):1085–1094. https://doi.org/10.1002/ijc.29087

    Article  CAS  PubMed  Google Scholar 

  144. Cohen J (2010) Immunology. Painful failure of promising genital herpes vaccine. Science 330(6002):304

    Article  CAS  PubMed  Google Scholar 

  145. Bernstein DI, Wald A, Warren T et al (2017) Therapeutic vaccine for genital herpes simplex virus-2 infection: findings from a randomized trial. J Infect Dis 215(6):856–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Genocea (2017) Genocea announces strategic shift to immuno oncology and the development of neoantigen cancer vaccines

    Google Scholar 

  147. Van Wagoner N, Fife K, Leone PA et al (2018) Effects of different doses of GEN-003, a therapeutic vaccine for genital herpes simplex virus-2, on viral shedding and lesions: results of a randomized placebo-controlled trial. J Infect Dis 218(12):1890–1899

    Article  PubMed  PubMed Central  Google Scholar 

  148. Wald A, Koelle DM, Fife K et al (2011) Safety and immunogenicity of long HSV-2 peptides complexed with rhHsc70 in HSV-2 seropositive persons. Vaccine 29(47):8520–8529

    Article  CAS  PubMed  Google Scholar 

  149. Agenus (2014) Agenus vaccine shows significant reduction in viral burden after herpv generated immune activation [online]. https://investor.agenusbio.com/2014-06-26-Agenus-Vaccine-Shows-Significant-Reduction-in-Viral-Burden-after-HerpV-Generated-Immune-Activation

  150. Veselenak RL, Shlapobersky M, Pyles RB et al (2012) A Vaxfectin((R))-adjuvanted HSV-2 plasmid DNA vaccine is effective for prophylactic and therapeutic use in the guinea pig model of genital herpes. Vaccine 30(49):7046–7051

    Article  CAS  PubMed  Google Scholar 

  151. Vical (2018) Vical reports phase 2 trial of HSV-2 therapeutic vaccine did not meet primary endpoint. Vical

    Google Scholar 

  152. Admedus (2017) Admedus hsv 2 phase iia results. Admedus

    Google Scholar 

  153. Dutton JL, Woo WP, Chandra J et al (2016) An escalating dose study to assess the safety, tolerability and immunogenicity of a Herpes Simplex Virus DNA vaccine, COR-1. Hum Vaccin Immunother 12(12):3079–3088

    Article  PubMed  PubMed Central  Google Scholar 

  154. Proactive Investors (2017) Admedus meets primary endpoint for herpes vaccine study [online]. https://www.proactiveinvestors.com.au/companies/news/177275/admedus-meets-primary-endpoint-for-herpes-vaccine-study-177275.html

  155. Bluewillow Biologics (2017) Nanobio receives sbir grant for genital herpes vaccine [online]. http://www.bluewillow.com/nanobio-receives-sbir-grant-for-genital-herpes-vaccine/

  156. Awasthi S, Huang J, Shaw C et al (2014) Blocking herpes simplex virus 2 glycoprotein E immune evasion as an approach to enhance efficacy of a trivalent subunit antigen vaccine for genital herpes. J Virol 88(15):8421–8432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Odegard JM, Flynn PA, Campbell DJ et al (2016) A novel HSV-2 subunit vaccine induces GLA-dependent CD4 and CD8 T cell responses and protective immunity in mice and guinea pigs. Vaccine 34(1):101–109

    Article  CAS  PubMed  Google Scholar 

  158. NIH (2018) HSV vaccine in hsv-2 seropositive adults [online]. https://clinicaltrials.gov/ct2/show/record/NCT02571166?view=record

  159. Halford WP, Puschel R, Gershburg E et al (2011) A live-attenuated HSV-2 ICP0 virus elicits 10 to 100 times greater protection against genital herpes than a glycoprotein D subunit vaccine. PLoS One 6(3):e17748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Stanfield BA, Pahar B, Chouljenko VN et al (2017) Vaccination of rhesus macaques with the live-attenuated HSV-1 vaccine VC2 stimulates the proliferation of mucosal T cells and germinal center responses resulting in sustained production of highly neutralizing antibodies. Vaccine 35(4):536–543

    Article  CAS  PubMed  Google Scholar 

  161. Stanfield BA, Rider PJF, Caskey J et al (2018) Intramuscular vaccination of guinea pigs with the live-attenuated human herpes simplex vaccine VC2 stimulates a transcriptional profile of vaginal Th17 and regulatory Tr1 responses. Vaccine 36(20):2842–2849

    Article  CAS  PubMed  Google Scholar 

  162. Richards AL, Sollars PJ, Pitts JD et al (2017) The pUL37 tegument protein guides alpha-herpesvirus retrograde axonal transport to promote neuroinvasion. PLoS Pathog 13(12):e1006741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Truong NR, Smith JB, Sandgren KJ et al (2019) Mechanisms of immune control of mucosal HSV infection: a guide to rational vaccine design. Front Immunol 10:373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Chohan V, Baeten JM, Benki S et al (2009) A prospective study of risk factors for herpes simplex virus type 2 acquisition among high-risk HIV-1 seronegative women in Kenya. Sex Transm Infect 85(7):489–492. https://doi.org/10.1136/sti.2009.036103

    Article  CAS  PubMed  Google Scholar 

  165. Gosmann C, Anahtar MN, Handley SA et al (2017) Lactobacillus-deficient cervicovaginal bacterial communities are associated with increased HIV acquisition in young South African women. Immunity 46(1):29–37. https://doi.org/10.1016/j.immuni.2016.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Masese L, Baeten JM, Richardson BA et al (2015) Changes in the contribution of genital tract infections to HIV acquisition among Kenyan high-risk women from 1993 to 2012. AIDS 29(9):1077–1085. https://doi.org/10.1097/qad.0000000000000646

    Article  PubMed  Google Scholar 

  167. Masese L, Baeten JM, Richardson BA et al (2014) Incident herpes simplex virus type 2 infection increases the risk of subsequent episodes of bacterial vaginosis. J Infect Dis 209(7):1023–1027. https://doi.org/10.1093/infdis/jit634

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony L. Cunningham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sandgren, K.J., Truong, N.R., Smith, J.B., Bertram, K., Cunningham, A.L. (2020). Vaccines for Herpes Simplex: Recent Progress Driven by Viral and Adjuvant Immunology. In: Diefenbach, R., Fraefel, C. (eds) Herpes Simplex Virus . Methods in Molecular Biology, vol 2060. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9814-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9814-2_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9813-5

  • Online ISBN: 978-1-4939-9814-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics