Skip to main content

HSV Mutant Generation and Dual Detection Methods for Gaining Insight into Latent/Lytic Cycles In Vivo

  • Protocol
  • First Online:
Herpes Simplex Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2060))

Abstract

Two important components of a useful strategy to examine viral gene function, regulation, and pathogenesis in vivo are (1) a highly efficient protocol to generate viral mutants that limits undesired mutation and retains full replication competency in vivo, and (2) an efficient system to detect and quantify viral promoter activity and gene expression in rare cells in vivo and to gain insight into the surrounding tissue environment. Our strategy and protocols for generating, characterizing, and employing HSV viral promoter/reporter mutants in vivo are provided in this two-part chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whitley RJ (2001) Herpes simplex viruses. In: Howley PM, Knipe DM (eds) Field’s virology. Lippincott Williams & Wilkins, Philadelphia, PA, pp 2461–2510

    Google Scholar 

  2. Whitley RJ (2002) Herpes simplex virus infection. Semin Pediatr Infect Dis 13(1):6–11

    Article  Google Scholar 

  3. Wagner EK, Bloom DC (1997) Experimental investigation of herpes simplex virus latency. Clin Microbiol Rev 10(3):419–443

    Article  CAS  Google Scholar 

  4. Sawtell NM (1998) The probability of in vivo reactivation of herpes simplex virus type 1 increases with the number of latently infected neurons in the ganglia. J Virol 72(8):6888–6892

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sawtell NM, Thompson RL (1992) Rapid in vivo reactivation of herpes simplex virus in latently infected murine ganglionic neurons after transient hyperthermia. J Virol 66(4):2150–2156

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rock DL et al (1987) Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. J Virol 61(12):3820–3826

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wechsler SL et al (1988) Fine mapping of the latency-related gene of herpes simplex virus type 1: alternative splicing produces distinct latency-related RNAs containing open reading frames. J Virol 62(11):4051–4058

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Shimeld C et al (1989) An improved model of recurrent herpetic eye disease in mice. Curr Eye Res 8(11):1193–1205

    Article  CAS  Google Scholar 

  9. LeBlanc RA et al (1999) Treatment of HSV-1 infection with immunoglobulin or acyclovir: comparison of their effects on viral spread, latency, and reactivation. Virology 262(1):230–236

    Article  CAS  Google Scholar 

  10. Negatsch A, Mettenleiter TC, Fuchs W (2011) Herpes simplex virus type 1 strain KOS carries a defective US9 and a mutated US8A gene. J Gen Virol 92(Pt 1):167–172

    Article  CAS  Google Scholar 

  11. Pandey U et al (2017) Inferred father-to-son transmission of herpes simplex virus results in near-perfect preservation of viral genome identity and in vivo phenotypes. Sci Rep 7(1):13666

    Article  Google Scholar 

  12. Gierasch WW et al (2006) Construction and characterization of bacterial artificial chromosomes containing HSV-1 strains 17 and KOS. J Virol Methods 135(2):197–206

    Article  CAS  Google Scholar 

  13. Du T et al (2010) Disruption of HDAC/CoREST/REST repressor by dnREST reduces genome silencing and increases virulence of herpes simplex virus. Proc Natl Acad Sci U S A 107(36):15904–15909

    Article  CAS  Google Scholar 

  14. Sawtell NM (2003) Quantitative analysis of Herpes simplex virus reactivation in vivo demonstrates that reactivation in the nervous system is not inhibited at early times postinoculation. J Virol 77(7):4127–4138

    Article  CAS  Google Scholar 

  15. Sawtell NM (2005) Detection and quantification of the rare latently infected cell undergoing herpes simplex virus transcriptional activation in the nervous system in vivo. Methods Mol Biol 292:57–72

    CAS  PubMed  Google Scholar 

  16. Thompson RL, Preston CM, Sawtell NM (2009) De novo synthesis of VP16 coordinates the exit from HSV latency in vivo. PLoS Pathog 5(3):e1000352

    Article  Google Scholar 

  17. Thompson RL, Sawtell NM (2006) Evidence that the herpes simplex virus type 1 ICP0 protein does not initiate reactivation from latency in vivo. J Virol 80(22):10919–10930

    Article  CAS  Google Scholar 

  18. Thompson RL, Shieh MT, Sawtell NM (2003) Analysis of herpes simplex virus ICP0 promoter function in sensory neurons during acute infection, establishment of latency, and reactivation in vivo. J Virol 77(22):12319–12330

    Article  CAS  Google Scholar 

  19. Sawtell NM (1997) Comprehensive quantification of herpes simplex virus latency at the single-cell level. J Virol 71(7):5423–5431

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Thompson RL, Sawtell NM (2000) Replication of herpes simplex virus type 1 within trigeminal ganglia is required for high frequency but not high viral genome copy number latency. J Virol 74(2):965–974

    Article  CAS  Google Scholar 

  21. Thompson RL, Sawtell NM (2011) The herpes simplex virus type 1 latency associated transcript locus is required for the maintenance of reactivation competent latent infections. J Neurovirol 17(6):552–558

    Article  CAS  Google Scholar 

  22. Catez F et al (2012) HSV-1 genome subnuclear positioning and associations with host-cell PML-NBs and centromeres regulate LAT locus transcription during latency in neurons. PLoS Pathog 8(8):e1002852

    Article  CAS  Google Scholar 

  23. Helander KG (2000) Formaldehyde prepared from paraformaldehyde is stable. Biotech Histochem 75(1):19–22

    Article  CAS  Google Scholar 

  24. Cunningham C, Davison AJ (1993) A cosmid-based system for constructing mutants of herpes simplex virus type 1. Virology 197(1):116–124

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy M. Sawtell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sawtell, N.M., Thompson, R.L. (2020). HSV Mutant Generation and Dual Detection Methods for Gaining Insight into Latent/Lytic Cycles In Vivo. In: Diefenbach, R., Fraefel, C. (eds) Herpes Simplex Virus . Methods in Molecular Biology, vol 2060. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9814-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9814-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9813-5

  • Online ISBN: 978-1-4939-9814-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics