Skip to main content

Microneedle-Mediated Transdermal Delivery of Tizanidine Hydrochloride

  • Protocol
  • First Online:
Drug Delivery Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2059))

Abstract

Tizanidine hydrochloride is a skeletal muscle relaxant used for the treatment of spasm, a sudden involuntary muscle contraction leading to pain. The presently available oral dosage form has limitations such as high first pass metabolism resulting in low oral bioavailability. The short half-life necessitates its frequent administration to maintain the required plasma concentration. Transdermal delivery of drug avoids its first pass hepatic metabolism and gives controlled release, making it possible for reduction in dosing frequency. Drug delivery through transdermal route is severely limited by the presence of a tough stratum corneum barrier. A penetration enhancement approach is often necessary to achieve desired plasma concentrations. Microneedles are very short and sharp needles which do not cause pain. Thus, in the present investigation, preparation and evaluation of a transdermal delivery system for tizanidine hydrochloride based on microneedles are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alkilani A, McCrudden MT, Donnelly R (2015) Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics 7(4):438–470

    Article  CAS  Google Scholar 

  2. Tanwar H, Sachdeva R (2016) Transdermal drug delivery system: a review. Int J Pharm Sci Res 7:2274–2290

    CAS  Google Scholar 

  3. Dharadhar S, Majumdar A, Dhoble S, Patravale V (2019) Microneedles for transdermal drug delivery: a systematic review. Drug Dev Ind Pharm 45(2):188–201

    Article  CAS  Google Scholar 

  4. Prausnitz MR (2004) Microneedles for transdermal drug delivery. Adv Drug Deliv Rev 56(5):581–587

    Article  CAS  Google Scholar 

  5. Indermun S, Luttge R, Choonara YE, Kumar P, Du Toit LC, Modi G et al (2014) Current advances in the fabrication of microneedles for transdermal delivery. J Control Release 185:130–138

    Article  CAS  Google Scholar 

  6. Ita K (2015) Transdermal delivery of drugs with microneedles—potential and challenges. Pharmaceutics 7(3):90–105

    Article  CAS  Google Scholar 

  7. Donnelly RF, Singh TRR, Woolfson AD (2010) Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety. Drug Deliv 17(4):187–207

    Article  CAS  Google Scholar 

  8. Kim Y-C, Park J-H, Prausnitz MR (2012) Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 64(14):1547–1568

    Article  CAS  Google Scholar 

  9. Kaushik D, Kilfoyle B, Thakur R, Michniak-Kohn BB (2010) Microneedles–minimally invasive transdermal delivery technology. In: Handbook of non-invasive drug delivery systems. Elsevier, Amsterdam, pp 135–164

    Chapter  Google Scholar 

  10. Wang M, Hu L, Xu C (2017) Recent advances in the design of polymeric microneedles for transdermal drug delivery and biosensing. Lab Chip 17(8):1373–1387

    Article  CAS  Google Scholar 

  11. Hegde NR, Kaveri SV, Bayry J (2011) Recent advances in the administration of vaccines for infectious diseases: microneedles as painless delivery devices for mass vaccination. Drug Discov Today 16(23-24):1061–1068

    Article  Google Scholar 

  12. van der Maaden K, Jiskoot W, Bouwstra J (2012) Microneedle technologies for (trans) dermal drug and vaccine delivery. J Control Release 161(2):645–655

    Article  Google Scholar 

  13. Nagadevi B, Kumar KS, Venkanna P, Prabhakar D (2014) Formulation and characterisation of tizanidine hydrochloride loaded ethosomes patch. Int J Pharm Pharm Sci 6(4):199–205

    CAS  Google Scholar 

  14. Tse F, Jaffe J, Bhuta S (1987) Pharmacokinetics of orally administered tizanidine in healthy volunteers. Fundam Clin Pharmacol 1(6):479–488

    Article  CAS  Google Scholar 

  15. Bediz B, Korkmaz E, Khilwani R, Donahue C, Erdos G, Falo LD et al (2014) Dissolvable microneedle arrays for intradermal delivery of biologics: fabrication and application. Pharm Res 31(1):117–135

    Article  CAS  Google Scholar 

  16. Amodwala S, Kumar P, Thakkar HP (2017) Statistically optimized fast dissolving microneedle transdermal patch of meloxicam: a patient friendly approach to manage arthritis. Eur J Pharm Sci 104:114–123

    Article  CAS  Google Scholar 

  17. Wang QL, Zhu DD, Chen Y, Guo XD (2016) A fabrication method of microneedle molds with controlled microstructures. Mater Sci Eng C 65:135–142

    Article  CAS  Google Scholar 

  18. Kathuria H, Li H, Pan J, Lim SH, Kochhar JS, Wu C et al (2016) Large size microneedle patch to deliver lidocaine through skin. Pharm Res 33(11):2653–2667

    Article  CAS  Google Scholar 

  19. Akhtar N (2014) Microneedles: an innovative approach to transdermal delivery—a review. Int J Pharm Pharm Sci 6:18–25

    CAS  Google Scholar 

  20. Silva CL, Topgaard D, Kocherbitov V, Sousa J, Pais AA, Sparr E (2007) Stratum corneum hydration: phase transformations and mobility in stratum corneum, extracted lipids and isolated corneocytes. Biochim Biophys Acta 1768(11):2647–2659

    Article  CAS  Google Scholar 

  21. Dąbrowska A, Rotaru GM, Spano F, Affolter C, Fortunato G, Lehmann S et al (2017) A water-responsive, gelatine-based human skin model. Tribol Int 113:316–322

    Article  Google Scholar 

  22. Raj Singh TR, Garland MJ, Migalska K, Salvador EC, Shaikh R, McCarthy HO et al (2012) Influence of a pore-forming agent on swelling, network parameters, and permeability of poly (ethylene glycol)-crosslinked poly (methyl vinyl ether-co-maleic acid) hydrogels: application in transdermal delivery systems. J Appl Polym Sci 125(4):2680–2694

    Article  Google Scholar 

  23. Thakkar H, Savsani H, Kumar P (2016) Ethosomal hydrogel of raloxifene HCl: statistical optimization & ex vivo permeability evaluation across microporated Pig ear skin. Curr Drug Deliv 13(7):1111–1122

    Article  CAS  Google Scholar 

  24. http://www.ich.org/fileadmin/Public_Web_Site/ABOUT_ICH/Organisation/SADC/Guideline_for_Stability_Studies.pdf.Ig

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hetal Thakkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thakkar, H., Pandya, K., Patel, B. (2020). Microneedle-Mediated Transdermal Delivery of Tizanidine Hydrochloride. In: Jain, K. (eds) Drug Delivery Systems. Methods in Molecular Biology, vol 2059. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9798-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9798-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9797-8

  • Online ISBN: 978-1-4939-9798-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics