Skip to main content

Immunomodulation in Oncolytic Measles Virotherapy

  • Protocol
  • First Online:
Book cover Oncolytic Viruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2058))

Abstract

With the recognition of oncolytic virotherapy as an immunotherapy, the distinct interactions between oncolytic agents and the immune system have come into focus. The role of the immune system in oncolytic virotherapy is somewhat ambiguous: While preexisting or arising immunity directed against viral antigens may preclude efficient viral replication and spread, immunity directed against tumor antigens is considered essential for long-term treatment success. Aside from the antiviral and antitumor immune status of the patient, the specific immunological microenvironment in a given tumor adds an additional layer of complexity.

In this review we focus on the case of measles virus, which has long been known for its multifaceted interplay with the immune system. The high prevalence of measles-neutralizing antibodies in the general population may pose additional challenges. The oncolytic measles virus vector platform offers manifold opportunities for tumor-targeted immunomodulation. This review provides a survey of immunomodulation in the context of measles virotherapy including strategies to suppress or circumvent antiviral immunity as well as enhance antitumor immunity that have been pursued in preclinical and clinical studies. Understanding and selective manipulation of the intricate balance between antiviral and antitumor immunity will be crucial to develop the full potential of oncolytic virotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bluming AZ, Ziegler JL (1971) Regression of Burkitt’s lymphoma in association with measles infection. Lancet 2(7715):105–106

    Article  CAS  Google Scholar 

  2. Mota HC (1973) Infantile Hodgkin’s disease: remission after measles. Br Med J 2(5863):421

    Article  CAS  Google Scholar 

  3. Russell SJ, Peng KW (2009) Measles virus for cancer therapy. Curr Top Microbiol Immunol 330:213–241

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Robinson S, Galanis E (2017) Potential and clinical translation of oncolytic measles viruses. Expert Opin Biol Ther 17(3):353–363. https://doi.org/10.1080/14712598.2017.1288713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shingai M, Ebihara T, Begum NA, Kato A, Honma T, Matsumoto K, Saito H, Ogura H, Matsumoto M, Seya T (2007) Differential type I IFN-inducing abilities of wild-type versus vaccine strains of measles virus. J Immunol 179(9):6123–6133

    Article  CAS  Google Scholar 

  6. Guillerme JB, Boisgerault N, Roulois D, Menager J, Combredet C, Tangy F, Fonteneau JF, Gregoire M (2013) Measles virus vaccine-infected tumor cells induce tumor antigen cross-presentation by human plasmacytoid dendritic cells. Clin Cancer Res 19(5):1147–1158. https://doi.org/10.1158/1078-0432.ccr-12-2733

    Article  CAS  Google Scholar 

  7. Griffin DE (2016) The immune response in measles: virus control, clearance and protective immunity. Viruses 8(10). https://doi.org/10.3390/v8100282

    Article  Google Scholar 

  8. Griffin DE (2010) Measles virus-induced suppression of immune responses. Immunol Rev 236:176–189. https://doi.org/10.1111/j.1600-065X.2010.00925.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Okada H, Sato TA, Katayama A, Higuchi K, Shichijo K, Tsuchiya T, Takayama N, Takeuchi Y, Abe T, Okabe N, Tashiro M (2001) Comparative analysis of host responses related to immunosuppression between measles patients and vaccine recipients with live attenuated measles vaccines. Arch Virol 146(5):859–874

    Article  CAS  Google Scholar 

  10. Allagui F, Achard C, Panterne C, Combredet C, Labarriere N, Dreno B, Elgaaied AB, Pouliquen D, Tangy F, Fonteneau JF, Gregoire M, Boisgerault N (2017) Modulation of the type I interferon response defines the sensitivity of human melanoma cells to Oncolytic measles virus. Curr Gene Ther 16(6):419–428. https://doi.org/10.2174/1566523217666170102110502

    Article  CAS  PubMed  Google Scholar 

  11. Achard C, Boisgerault N, Delaunay T, Roulois D, Nedellec S, Royer PJ, Pain M, Combredet C, Mesel-Lemoine M, Cellerin L, Magnan A, Tangy F, Gregoire M, Fonteneau JF (2015) Sensitivity of human pleural mesothelioma to oncolytic measles virus depends on defects of the type I interferon response. Oncotarget 6(42):44892–44904. https://doi.org/10.18632/oncotarget.6285

    Article  PubMed  PubMed Central  Google Scholar 

  12. Noll M, Berchtold S, Lampe J, Malek NP, Bitzer M, Lauer UM (2013) Primary resistance phenomena to oncolytic measles vaccine viruses. Int J Oncol 43(1):103–112. https://doi.org/10.3892/ijo.2013.1914

    Article  CAS  PubMed  Google Scholar 

  13. Kurokawa C, Iankov ID, Anderson SK, Aderca I, Leontovich AA, Maurer MJ, Oberg AL, Schroeder MA, Giannini C, Greiner SM, Becker MA, Thompson EA, Haluska P, Jentoft ME, Parney IF, Weroha SJ, Jen J, Sarkaria JN, Galanis E (2018) Constitutive interferon pathway activation in tumors as an efficacy determinant following Oncolytic virotherapy. J Natl Cancer Inst 110(10):1123–1132. https://doi.org/10.1093/jnci/djy033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Donnelly OG, Errington-Mais F, Steele L, Hadac E, Jennings V, Scott K, Peach H, Phillips RM, Bond J, Pandha H, Harrington K, Vile R, Russell S, Selby P, Melcher AA (2013) Measles virus causes immunogenic cell death in human melanoma. Gene Ther 20(1):7–15. https://doi.org/10.1038/gt.2011.205

    Article  CAS  Google Scholar 

  15. Achard C, Guillerme JB, Bruni D, Boisgerault N, Combredet C, Tangy F, Jouvenet N, Gregoire M, Fonteneau JF (2017) Oncolytic measles virus induces tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated cytotoxicity by human myeloid and plasmacytoid dendritic cells. Oncoimmunology 6(1):e1261240. https://doi.org/10.1080/2162402x.2016.1261240

    Article  Google Scholar 

  16. Peng KW, Myers R, Greenslade A, Mader E, Greiner S, Federspiel MJ, Dispenzieri A, Russell SJ (2013) Using clinically approved cyclophosphamide regimens to control the humoral immune response to oncolytic viruses. Gene Ther 20(3):255–261. https://doi.org/10.1038/gt.2012.31

    Article  CAS  PubMed  Google Scholar 

  17. Liu YP, Tong C, Dispenzieri A, Federspiel MJ, Russell SJ, Peng KW (2012) Polyinosinic acid decreases sequestration and improves systemic therapy of measles virus. Cancer Gene Ther 19(3):202–211. https://doi.org/10.1038/cgt.2011.82

    Article  CAS  PubMed  Google Scholar 

  18. Ungerechts G, Springfeld C, Frenzke ME, Lampe J, Parker WB, Sorscher EJ, Cattaneo R (2007) An immunocompetent murine model for oncolysis with an armed and targeted measles virus. Mol Ther 15(11):1991–1997. https://doi.org/10.1038/sj.mt.6300291

    Article  CAS  PubMed  Google Scholar 

  19. Myers RM, Greiner SM, Harvey ME, Griesmann G, Kuffel MJ, Buhrow SA, Reid JM, Federspiel M, Ames MM, Dingli D, Schweikart K, Welch A, Dispenzieri A, Peng KW, Russell SJ (2007) Preclinical pharmacology and toxicology of intravenous MV-NIS, an oncolytic measles virus administered with or without cyclophosphamide. Clin Pharmacol Ther 82(6):700–710. https://doi.org/10.1038/sj.clpt.6100409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dispenzieri A, Tong C, LaPlant B, Lacy MQ, Laumann K, Dingli D, Zhou Y, Federspiel MJ, Gertz MA, Hayman S, Buadi F, O'Connor M, Lowe VJ, Peng KW, Russell SJ (2017) Phase I trial of systemic administration of Edmonston strain of measles virus genetically engineered to express the sodium iodide symporter in patients with recurrent or refractory multiple myeloma. Leukemia 31(12):2791–2798. https://doi.org/10.1038/leu.2017.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zare F, Magnusson M, Mollers LN, Jin T, Tarkowski A, Bokarewa M (2008) Single-stranded polyinosinic acid oligonucleotides trigger leukocyte production of proteins belonging to fibrinolytic and coagulation cascades. J Leukoc Biol 84(3):741–747. https://doi.org/10.1189/jlb.0506345

    Article  CAS  PubMed  Google Scholar 

  22. van Rooijen N, Sanders A, van den Berg TK (1996) Apoptosis of macrophages induced by liposome-mediated intracellular delivery of clodronate and propamidine. J Immunol Methods 193(1):93–99

    Article  Google Scholar 

  23. Fields BN, Knipe DM, Howley PM (2013) Fields virology, 6th edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  24. Liu C, Russell SJ, Peng KW (2010) Systemic therapy of disseminated myeloma in passively immunized mice using measles virus-infected cell carriers. Mol Ther 18(6):1155–1164. https://doi.org/10.1038/mt.2010.43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Iankov ID, Blechacz B, Liu C, Schmeckpeper JD, Tarara JE, Federspiel MJ, Caplice N, Russell SJ (2007) Infected cell carriers: a new strategy for systemic delivery of oncolytic measles viruses in cancer virotherapy. Mol Ther 15(1):114–122. https://doi.org/10.1038/sj.mt.6300020

    Article  CAS  Google Scholar 

  26. Mader EK, Maeyama Y, Lin Y, Butler GW, Russell HM, Galanis E, Russell SJ, Dietz AB, Peng KW (2009) Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy model. Clin Cancer Res 15(23):7246–7255. https://doi.org/10.1158/1078-0432.ccr-09-1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ong HT, Hasegawa K, Dietz AB, Russell SJ, Peng KW (2007) Evaluation of T cells as carriers for systemic measles virotherapy in the presence of antiviral antibodies. Gene Ther 14(4):324–333. https://doi.org/10.1038/sj.gt.3302880

    Article  CAS  PubMed  Google Scholar 

  28. Komarova S, Kawakami Y, Stoff-Khalili MA, Curiel DT, Pereboeva L (2006) Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther 5(3):755–766. https://doi.org/10.1158/1535-7163.mct-05-0334

    Article  CAS  PubMed  Google Scholar 

  29. Nosaki K, Hamada K, Takashima Y, Sagara M, Matsumura Y, Miyamoto S, Hijikata Y, Okazaki T, Nakanishi Y, Tani K (2016) A novel, polymer-coated oncolytic measles virus overcomes immune suppression and induces robust antitumor activity. Mol Ther Oncolytics 3:16022. https://doi.org/10.1038/mto.2016.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miest TS, Yaiw KC, Frenzke M, Lampe J, Hudacek AW, Springfeld C, von Messling V, Ungerechts G, Cattaneo R (2011) Envelope-chimeric entry-targeted measles virus escapes neutralization and achieves oncolysis. Mol Ther 19(10):1813–1820. https://doi.org/10.1038/mt.2011.92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hudacek AW, Navaratnarajah CK, Cattaneo R (2013) Development of measles virus-based shielded oncolytic vectors: suitability of other paramyxovirus glycoproteins. Cancer Gene Ther 20(2):109–116. https://doi.org/10.1038/cgt.2012.92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Munoz-Alia MA, Casasnovas JM, Celma ML, Carabana J, Liton PB, Fernandez-Munoz R (2017) Measles virus Hemagglutinin epitopes immunogenic in natural infection and vaccination are targeted by broad or genotype-specific neutralizing monoclonal antibodies. Virus Res 236:30–43. https://doi.org/10.1016/j.virusres.2017.04.018

    Article  CAS  PubMed  Google Scholar 

  33. Fulton BO, Sachs D, Beaty SM, Won ST, Lee B, Palese P, Heaton NS (2015) Mutational analysis of measles virus suggests constraints on antigenic variation of the glycoproteins. Cell Rep 11(9):1331–1338. https://doi.org/10.1016/j.celrep.2015.04.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dyer A, Baugh R, Chia SL (2019) Turning cold tumours hot: oncolytic virotherapy gets up close and personal with other therapeutics at the 11th Oncolytic virus conference. Cancer Gene Ther 26(3–4):59–73. https://doi.org/10.1038/s41417-018-0042-1

    Article  CAS  PubMed  Google Scholar 

  35. Julik E, Reyes-Del Valle J (2017) A recombinant measles vaccine with enhanced resistance to passive immunity. Viruses 9(10):E265. https://doi.org/10.3390/v9100265

    Article  CAS  PubMed  Google Scholar 

  36. Ohno S, Ono N, Takeda M, Takeuchi K, Yanagi Y (2004) Dissection of measles virus V protein in relation to its ability to block alpha/beta interferon signal transduction. J Gen Virol 85(Pt 10):2991–2999. https://doi.org/10.1099/vir.0.80308-0

    Article  CAS  PubMed  Google Scholar 

  37. Haralambieva I, Iankov I, Hasegawa K, Harvey M, Russell SJ, Peng KW (2007) Engineering oncolytic measles virus to circumvent the intracellular innate immune response. Mol Ther 15(3):588–597. https://doi.org/10.1038/sj.mt.6300076

    Article  CAS  PubMed  Google Scholar 

  38. Meng X, Nakamura T, Okazaki T, Inoue H, Takahashi A, Miyamoto S, Sakaguchi G, Eto M, Naito S, Takeda M, Yanagi Y, Tani K (2010) Enhanced antitumor effects of an engineered measles virus Edmonston strain expressing the wild-type N, P, L genes on human renal cell carcinoma. Mol Ther 18(3):544–551. https://doi.org/10.1038/mt.2009.296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stewart CE, Randall RE, Adamson CS (2014) Inhibitors of the interferon response enhance virus replication in vitro. PLoS One 9(11):e112014. https://doi.org/10.1371/journal.pone.0112014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gujar S, Pol JG, Kim Y, Lee PW, Kroemer G (2018) Antitumor benefits of antiviral immunity: an underappreciated aspect of Oncolytic virotherapies. Trends Immunol 39(3):209–221. https://doi.org/10.1016/j.it.2017.11.006

    Article  CAS  PubMed  Google Scholar 

  41. Speck T, Heidbuechel JPW, Veinalde R, Jaeger D, von Kalle C, Ball CR, Ungerechts G, Engeland CE (2018) Targeted BiTE expression by an oncolytic vector augments therapeutic efficacy against solid tumors. Clin Cancer Res 24(9):2128–2137. https://doi.org/10.1158/1078-0432.CCR-17-2651

    Article  CAS  PubMed  Google Scholar 

  42. Hutzler S, Erbar S, Jabulowsky RA, Hanauer JRH, Schnotz JH, Beissert T, Bodmer BS, Eberle R, Boller K, Klamp T, Sahin U, Muhlebach MD (2017) Antigen-specific oncolytic MV-based tumor vaccines through presentation of selected tumor-associated antigens on infected cells or virus-like particles. Sci Rep 7(1):16892. https://doi.org/10.1038/s41598-017-16928-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li H, Peng KW, Dingli D, Kratzke RA, Russell SJ (2010) Oncolytic measles viruses encoding interferon beta and the thyroidal sodium iodide symporter gene for mesothelioma virotherapy. Cancer Gene Ther 17(8):550–558. https://doi.org/10.1038/cgt.2010.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ushach I, Zlotnik A (2016) Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J Leukoc Biol 100(3):481–489. https://doi.org/10.1189/jlb.3RU0316-144R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Grote D, Cattaneo R, Fielding AK (2003) Neutrophils contribute to the measles virus-induced antitumor effect: enhancement by granulocyte macrophage colony-stimulating factor expression. Cancer Res 63(19):6463–6468

    CAS  PubMed  Google Scholar 

  46. Grossardt C, Engeland CE, Bossow S, Halama N, Zaoui K, Leber MF, Springfeld C, Jaeger D, von Kalle C, Ungerechts G (2013) Granulocyte-macrophage colony-stimulating factor-armed oncolytic measles virus is an effective therapeutic cancer vaccine. Hum Gene Ther 24(7):644–654. https://doi.org/10.1089/hum.2012.205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3(2):133–146. https://doi.org/10.1038/nri1001

    Article  CAS  PubMed  Google Scholar 

  48. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10. https://doi.org/10.1016/j.immuni.2013.07.012

    Article  CAS  PubMed  Google Scholar 

  49. Veinalde R, Grossardt C, Hartmann L, Bourgeois-Daigneault MC, Bell JC, Jager D, von Kalle C, Ungerechts G, Engeland CE (2017) Oncolytic measles virus encoding interleukin-12 mediates potent antitumor effects through T cell activation. Oncoimmunology 6(4):e1285992. https://doi.org/10.1080/2162402x.2017.1285992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Combredet C, Labrousse V, Mollet L, Lorin C, Delebecque F, Hurtrel B, McClure H, Feinberg MB, Brahic M, Tangy F (2003) A molecularly cloned Schwarz strain of measles virus vaccine induces strong immune responses in macaques and transgenic mice. J Virol 77(21):11546–11554

    Article  CAS  Google Scholar 

  51. Bankamp B, Takeda M, Zhang Y, Xu W, Rota PA (2011) Genetic characterization of measles vaccine strains. J Infect Dis 204(Suppl 1):S533–S548. https://doi.org/10.1093/infdis/jir097

    Article  PubMed  Google Scholar 

  52. Amedei A, Cappon A, Codolo G, Cabrelle A, Polenghi A, Benagiano M, Tasca E, Azzurri A, D'Elios MM, Del Prete G, de Bernard M (2006) The neutrophil-activating protein of helicobacter pylori promotes Th1 immune responses. J Clin Investig 116(4):1092–1101. https://doi.org/10.1172/jci27177

    Article  CAS  PubMed  Google Scholar 

  53. Iankov ID, Allen C, Federspiel MJ, Myers RM, Peng KW, Ingle JN, Russell SJ, Galanis E (2012) Expression of immunomodulatory neutrophil-activating protein of helicobacter pylori enhances the antitumor activity of oncolytic measles virus. Mol Ther 20(6):1139–1147. https://doi.org/10.1038/mt.2012.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Quezada SA, Peggs KS (2013) Exploiting CTLA-4, PD-1 and PD-L1 to reactivate the host immune response against cancer. Br J Cancer 108(8):1560–1565. https://doi.org/10.1038/bjc.2013.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rowshanravan B, Halliday N, Sansom DM (2018) CTLA-4: a moving target in immunotherapy. Blood 131(1):58–67

    CAS  PubMed  Google Scholar 

  56. Engeland CE, Grossardt C, Veinaide R, Bossow S, Lutz D, Kaufmann JK, Shevchenko I, Umansky V, Nettelbeck DM, Weichert W, Jager D, von Katie C, Ungerechts G (2014) CTLA-4 and PD-L1 checkpoint blockade enhances Oncolytic measles virus therapy. Mol Ther 22(11):1949–1959. https://doi.org/10.1038/mt.2014.160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Klinger M, Benjamin J, Kischel R, Stienen S, Zugmaier G (2016) Harnessing T cells to fight cancer with BiTE(R) antibody constructs--past developments and future directions. Immunol Rev 270(1):193–208. https://doi.org/10.1111/imr.12393

    Article  CAS  PubMed  Google Scholar 

  58. Binnewies M, Roberts EW, Kersten K, Chan V (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24(5):541–550. https://doi.org/10.1038/s41591-018-0014-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bajzer Z, Carr T, Josic K, Russell SJ, Dingli D (2008) Modeling of cancer virotherapy with recombinant measles viruses. J Theor Biol 252(1):109–122. https://doi.org/10.1016/j.jtbi.2008.01.016

    Article  PubMed  Google Scholar 

  60. Santiago DN, Heidbuechel JPW, Kandell WM, Walker R, Djeu J, Engeland CE, Abate-Daga D, Enderling H (2017) Fighting cancer with mathematics and viruses. Viruses 9(9):E239. https://doi.org/10.3390/v9090239

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine E. Engeland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dietz, L., Engeland, C.E. (2020). Immunomodulation in Oncolytic Measles Virotherapy. In: Engeland, C. (eds) Oncolytic Viruses. Methods in Molecular Biology, vol 2058. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9794-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9794-7_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9793-0

  • Online ISBN: 978-1-4939-9794-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics