Skip to main content

Quantifying Replication Fork Progression at CTG Repeats by 2D Gel Electrophoresis

  • Protocol
  • First Online:
Book cover Trinucleotide Repeats

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2056))

Abstract

Physical separation of branched DNA from linear molecules is based on the difference of mobility of linear versus branched DNA during two-dimensional agarose gel electrophoresis. Structured DNA migrates as slower species when compared to linear DNA of similar molecular weight. Metabolic processes such as S phase replication or double strand-break repair may generate branched DNA molecules. Trinucleotide repeats are naturally prone to form secondary structures that can modify their migration through an agarose gel matrix. These structures may also interfere in vivo with replication, by slowing down replication-fork progression, transiently stalling forks, possibly leading to secondary structure such as Holliday junctions or hemicatenanes. Alternatively, reversed replication forks may occur following fork stalling, disrupting replication dynamics and modifying DNA migration on agarose gel. So although two-dimensional agarose gel electrophoresis theoretically allows to resolve a mixture of structured DNA molecules and quantify them by radioactive hybridization, its practical application to trinucleotide repeats faces some serious technical challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bell L, Byers B (1983) Separation of branched from linear DNA by two-dimensional gel electrophoresis. Anal Biochem 130:527–535

    Article  CAS  PubMed  Google Scholar 

  2. Brewer BJ, Fangman WL (1987) The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51:463–471

    Article  CAS  PubMed  Google Scholar 

  3. Schvartzman JB, Martinez-Robles ML, Lopez V, Hernandez P, Krimer DB (2012) 2D gels and their third-dimension potential. Methods 57:170–178

    Article  CAS  PubMed  Google Scholar 

  4. Schwacha A, Kleckner N (1995) Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83:783–791

    Article  CAS  PubMed  Google Scholar 

  5. Hunter N, Kleckner N (2001) The single-end invasion: an assymetric intermediate at the double-strand break to double-Holliday junction transition of meiotic recombination. Cell 106:59–70

    CAS  PubMed  Google Scholar 

  6. Kim JC, Mirkin SM (2013) The balancing act of DNA repeat expansions. Curr Opin Genet Dev 23:280–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Richard G-F, Kerrest A, Dujon B (2008) Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 72:686–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pearson CE, Edamura KN, Cleary JD (2005) Repeat instability: mechanisms of dynamic mutations. Nat Rev Genet 6:729–742

    Article  CAS  PubMed  Google Scholar 

  9. McMurray CT (2010) Mechanisms of trinucleotide repeat instability during human development. Nat Rev Genet 11:786–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Usdin K, House NC, Freudenreich CH (2015) Repeat instability during DNA repair: insights from model systems. Crit Rev Biochem Mol Biol 50(2):142–167. https://doi.org/10.3109/10409238.2014.999192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621

    Article  CAS  PubMed  Google Scholar 

  12. McMurray CT (1999) DNA secondary structure: a common and causative factor for expansion in human disease. Proc Natl Acad Sci U S A 96:1823–1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Samadashwily G, Raca G, Mirkin SM (1997) Trinucleotide repeats affect DNA replication in vivo. Nat Genet 17:298–304

    Article  CAS  PubMed  Google Scholar 

  14. Pelletier R, Krasilnikova MM, Samadashwily GM, Lahue R, Mirkin SM (2003) Replication and expansion of trinucleotide repeats in yeast. Mol Cell Biol 23:1349–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anand RP et al (2012) Overcoming natural replication barriers: differential helicase requirements. Nucleic Acids Res 40:1091–1105

    Article  CAS  PubMed  Google Scholar 

  16. Viterbo D, Michoud G, Mosbach V, Dujon B, Richard G-F (2016) Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair. DNA Repair 42:94–106

    Article  CAS  PubMed  Google Scholar 

  17. Saini N et al (2013) Migrating bubble during break-induced replication drives conservative DNA synthesis. Nature 502:389–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sugawara N, Haber JE (1992) Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol Cell Biol 12:563–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim JC, Harris ST, Dinter T, Shah KA, Mirkin SM (2017) The role of break-induced replication in large-scale expansions of (CAG)n/(CTG)n repeats. Nat Struct Mol Biol 24:55–60

    Article  PubMed  Google Scholar 

  20. Mosbach V, Poggi L, Viterbo D, Charpentier M, Richard G-F (2018) TALEN-induced double-strand break repair of CTG trinucleotide repeats. Cell Rep 22:2146–2159

    Article  CAS  PubMed  Google Scholar 

  21. Richard G-F, Goellner GM, McMurray CT, Haber JE (2000) Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11/RAD50/XRS2 complex. EMBO J 19:2381–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mosbach V, Poggi L, Richard G-F (2018) Trinucleotide repeat instability during double-strand break repair: from mechanisms to gene therapy. Curr Genet 65(1):17–28. https://doi.org/10.1007/s00294-018-0865-1

    Article  CAS  PubMed  Google Scholar 

  23. Gomes-Pereira M, Monckton DG (2017) Ethidium bromide modifies the agarose electrophoretic mobility of CAG•CTG alternative DNA structures generated by PCR. Front Cell Neurosci 11:153

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fierro-Fernandez M, Hernandez P, Krimer DB, Schvartzman JB (2007) Replication fork reversal occurs spontaneously after digestion but is constrained in supercoiled domains. J Biol Chem 282:18190–18196

    Article  CAS  PubMed  Google Scholar 

  25. Fierro-Fernandez M, Hernandez P, Krimer DB, Schvartzman JB (2007) Topological locking restrains replication fork reversal. Proc Natl Acad Sci USA 104:1500–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marbouty M, Ermont C, Dujon B, Richard G-F, Koszul R (2014) Purification of G1 daughter cells from different Saccharomycetes species through an optimized centrifugal elutriation procedure. Yeast 31:159–166

    Article  CAS  PubMed  Google Scholar 

  27. Holmes A et al (2012) Lsd1 and lsd2 control programmed replication fork pauses and imprinting in fission yeast. Cell Rep 2:1513–1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lopes M, Cotta-Ramusino C, Liberi G, Foiani M (2003) Branch migrating sister chromatid junctions form at replication origins through Rad51/Rad52-independent mechanisms. Mol Cell 12:1499–1510

    Article  CAS  PubMed  Google Scholar 

  29. Liberi G et al (2006) Methods to study replication fork collapse in budding yeast. Methods Enzym 409:442–462

    Article  CAS  Google Scholar 

  30. Brachmann CB et al (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work on 2D gels in our lab was generously supported by the Centre National de la Recherche Scientifique (CNRS) and by the Institut Pasteur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Viterbo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Viterbo, D., Richard, GF. (2020). Quantifying Replication Fork Progression at CTG Repeats by 2D Gel Electrophoresis. In: Richard, GF. (eds) Trinucleotide Repeats. Methods in Molecular Biology, vol 2056. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9784-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9784-8_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9783-1

  • Online ISBN: 978-1-4939-9784-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics