Skip to main content

Gene Therapy for Huntington’s Disease Using Targeted Endonucleases

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2056))

Abstract

Huntington’s disease (HD) is a hereditary neurological disorder caused by expansion of the CAG repeat tract in the huntingtin gene (HTT). The mutant protein with a long polyglutamine tract is toxic to cells, especially neurons, leading to their progressive degeneration. Similar to many other monogenic diseases, HD is a good target for gene therapy approaches, including the use of programmable endonucleases. Here, we describe a protocol for HTT gene knock out using a modified Cas9 protein (nickase, Cas9n) and a pair of sgRNAs flanking the repeats. Recently, we showed that excision of the CAG repeat tract resulted in a frameshift mutation and premature translation termination. As a model, we used HD patient-derived fibroblasts electroporated with a pair of plasmid vectors expressing CRISPR-Cas9n tools. Efficient HTT inactivation independent of the CAG tract length was confirmed by Western blotting. A modified version of this protocol involving precise excision of the CAG repeats and insertion of a new DNA sequence by homology directed repair may also be used for the generation of new isogenic cellular models of HD.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bates GP, Dorsey R, Gusella JF et al (2015) Huntington disease. Nat Rev Dis Primers 1:15005. https://doi.org/10.1038/nrdp.2015.5

    Article  PubMed  Google Scholar 

  2. Wild EJ, Tabrizi SJ (2017) Therapies targeting DNA and RNA in Huntington’s disease. Lancet Neurol 16:837–847. https://doi.org/10.1016/S1474-4422(17)30280-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shibata A, Steinlage M, Barton O et al (2017) DNA double-strand break resection occurs during non-homologous end joining in G1 but is distinct from resection during homologous recombination. Mol Cell 65:671–684.e5. https://doi.org/10.1016/j.molcel.2016.12.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cho SW, Kim S, Kim Y et al (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24:132–141. https://doi.org/10.1101/gr.162339.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ran FA, Hsu PD, Lin CY et al (2013) Double nicking by RNA-guided CRISPR cas9 for enhanced genome editing specificity. Cell 154:1380–1389. https://doi.org/10.1016/j.cell.2013.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kocher T, Peking P, Klausegger A et al (2017) Cut and paste: efficient homology-directed repair of a dominant negative KRT14 Mutation via CRISPR/Cas9 nickases. Mol Ther 25:2585–2598. https://doi.org/10.1016/j.ymthe.2017.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Eggenschwiler R, Moslem M, Fráguas MS et al (2016) Improved bi-allelic modification of a transcriptionally silent locus in patient-derived iPSC by Cas9 nickase. Nat Publ Gr:1–14. https://doi.org/10.1038/srep38198

  8. Mosbach V, Poggi L, Richard G-F (2019) Trinucleotide repeat instability during double-strand break repair: from mechanisms to gene therapy. Curr Genet 65:17–28. https://doi.org/10.1007/s00294-018-0865-1

    Article  CAS  PubMed  Google Scholar 

  9. Shin JW, Kim K-H, Chao MJ et al (2016) Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Hum Mol Genet 25(20):4566–4576. https://doi.org/10.1093/hmg/ddw286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Monteys AM, Ebanks SA, Keiser MS, Davidson BL (2017) CRISPR/Cas9 editing of the mutant Huntingtin Allele in vitro and in vivo. Mol Ther 25:12–23. https://doi.org/10.1016/j.ymthe.2016.11.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang S, Chang R, Yang H et al (2017) CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J Clin Invest 127:2719–2724. https://doi.org/10.1172/JCI92087

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dabrowska M, Juzwa W, Krzyzosiak WJ, Olejniczak M (2018) Precise excision of the CAG tract from the Huntingtin gene by Cas9 nickases. Front Neurosci 12:75. https://doi.org/10.3389/FNINS.2018.00075

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ramlee MK, Yan T, Cheung AMS et al (2015) High-throughput genotyping of CRISPR/Cas9-mediated mutants using fluorescent PCR-capillary gel electrophoresis. Sci Rep 5:15587. https://doi.org/10.1038/srep15587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haeussler M, Schönig K, Eckert H et al (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17:148. https://doi.org/10.1186/s13059-016-1012-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cui Y, Xu J, Cheng M et al (2018) Review of CRISPR/Cas9 sgRNA design tools. Interdiscip Sci Comput Life Sci 10:455–465. https://doi.org/10.1007/s12539-018-0298-z

    Article  CAS  Google Scholar 

  16. Yumlu S, Stumm J, Bashir S et al (2017) Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9. Methods 121–122:29–44. https://doi.org/10.1016/j.ymeth.2017.05.009

    Article  CAS  PubMed  Google Scholar 

  17. Dabrowska M, Czubak K, Juzwa W et al (2018) qEva-CRISPR: a method for quantitative evaluation of CRISPR/Cas-mediated genome editing in target and off-target sites. Nucleic Acids Res 46:e101. https://doi.org/10.1093/nar/gky505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Science Center (2015/18/E/NZ2/00678) and from the quality-promoting subsidy under the Leading National Research Center (KNOW) program for 2014–2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Olejniczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dabrowska, M., Olejniczak, M. (2020). Gene Therapy for Huntington’s Disease Using Targeted Endonucleases. In: Richard, GF. (eds) Trinucleotide Repeats. Methods in Molecular Biology, vol 2056. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9784-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9784-8_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9783-1

  • Online ISBN: 978-1-4939-9784-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics