Skip to main content

In Vitro Synthesis and RNA Structure Probing of CUG Triplet Repeat RNA

  • Protocol
  • First Online:
Trinucleotide Repeats

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2056))

Abstract

Aberrant RNA structure plays a central role in the molecular mechanisms guided by repeat RNAs in diseases like myotonic dystrophy (DM), C9orf72-linked amyotrophic lateral sclerosis (ALS) and fragile X tremor/ataxia syndrome (FXTAS). Much knowledge remains to be gained about how these repeat-expanded transcripts are actually folded, especially regarding the properties specific to very long and interrupted repeats. RNA structure can be interrogated by chemical as well as enzymatic probes. These probes usually bind or cleave single-stranded nucleotides, which can subsequently be detected using reverse transcriptase primer extension. In this chapter, we describe methodology for in vitro synthesis and structure probing of expanded CUG repeat RNAs associated with DM type 1 and approaches for the associated data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sobczak K, de Mezer M, Michlewski G, Krol J, Krzyzosiak WJ (2003) RNA structure of trinucleotide repeats associated with human neurological diseases. Nucleic Acids Res 31:5469–5482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ciesiolka A, Jazurek M, Drazkowska K, Krzyzosiak WJ (2017) Structural characteristics of simple RNA repeats associated with disease and their deleterious protein interactions. Front Cell Neurosci 11:97

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zu T, Gibbens B, Doty NS, Gomes-pereira M, Huguet A, Stone MD (2010) Non-ATG – initiated translation directed by microsatellite expansions. Proc Natl Acad Sci U S A 108:260–265

    Article  PubMed  PubMed Central  Google Scholar 

  4. Aartsma-Rus A, van Vliet L, Hirschi M, Janson AAM, Heemskerk H, de Winter CL et al (2009) Guidelines for antisense oligonucleotide design and insight into splice-modulating mechanisms. Mol Ther 17:548–553

    Article  CAS  PubMed  Google Scholar 

  5. Bernat V, Disney MD (2015) RNA structures as mediators of neurological diseases and as drug targets. Neuron 87:28–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weeks KM (2010) Advances in RNA structure analysis by chemical probing. Curr Opin Struct Biol 20:295–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Merino EJ, Wilkinson KA, Coughlan JL, Weeks KM (2005) RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J Am Chem Soc 127:4223–4231

    Article  CAS  PubMed  Google Scholar 

  8. Lorenz R, Wolfinger MT, Tanzer A, Hofacker IL (2016) Predicting RNA secondary structures from sequence and probing data. Methods 103:86–98

    Article  CAS  PubMed  Google Scholar 

  9. Spitale RC, Crisalli P, Flynn RA, Torre EA, Kool ET, Chang HY (2013) RNA SHAPE analysis in living cells. Nat Chem Biol 9:18–20

    Article  CAS  PubMed  Google Scholar 

  10. Leeflang EP, Arnheim N (1995) A novel repeat structure at the myotonic dystrophy locus in a 37 repeat allele with unexpectedly high stability. Hum Mol Genet 4:135–136

    Article  CAS  PubMed  Google Scholar 

  11. Busan S, Weeks KM (2013) Role of context in RNA structure: flanking sequences reconfigure CAG motif folding in huntingtin exon 1 transcripts. Biochemistry 52:8219–8225

    Article  CAS  PubMed  Google Scholar 

  12. van Cruchten RTP, Wieringa B, Wansink DG (2019) Expanded CUG repeats in DMPK transcripts adopt diverse hairpin conformations without influencing the structure of the flanking sequences. RNA 25:481–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Figura G, Koscianska E, Krzyzosiak WJ (2015) In vitro expansion of CAG, CAA, and mixed CAG/CAA repeats. Int J Mol Sci 16:18741–18751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Napierała M, Krzyzosiak WJ (1997) CUG repeats present in myotonin kinase RNA form metastable “slippery” hairpins. J Biol Chem 272:31079–31085

    Article  PubMed  Google Scholar 

  15. Mitra S, Shcherbakova IV, Altman RB, Brenowitz M, Laederach A (2008) High-throughput single-nucleotide structural mapping by capillary automated footprinting analysis. Nucleic Acids Res 36:1–10

    Article  Google Scholar 

  16. Cantara WA, Hatterschide J, Wu W, Musier-Forsyth K (2017) RiboCAT: a new capillary electrophoresis data analysis tool for nucleic acid probing. RNA 23:240–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim H, Cordero P, Das R, Yoon S (2013) HiTRACE-web: an online tool for robust analysis of high-throughput capillary electrophoresis. Nucleic Acids Res 41:492–498

    Article  Google Scholar 

  18. Vasa SM, Guex N, Wilkinson KA, Weeks KM, Giddings MC (2008) ShapeFinder: a software system for high-throughput quantitative analysis of nucleic acid reactivity information resolved by capillary electrophoresis. RNA 14:1979–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Karabiber F, McGinnis JL, Favorov OV, Weeks KM (2013) QuShape: rapid, accurate, and best-practices quantification of nucleic acid probing information, resolved by capillary electrophoresis. RNA 19:63–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11:129

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF et al (2011) ViennaRNA package 2.0. Algorithms Mol Biol 6:26

    Article  PubMed  PubMed Central  Google Scholar 

  22. Orpana AK, Ho TH, Alagrund K, Ridanpää M, Aittomäki K, Stenman J (2013) Novel heat pulse extension-PCR-based method for detection of large CTG-repeat expansions in myotonic dystrophy type 1. J Mol Diagn 15:110–115

    Article  CAS  PubMed  Google Scholar 

  23. Meng YX, Shen HR, Zhao Z, Bing Q, Li N, Hu J (2015) Optimization PCR for detection CTG/CCTG-repeat expansions in the diagnosis of myotonic dystrophies. Ann Clin Lab Sci 45:502–507

    CAS  PubMed  Google Scholar 

  24. Draper DE (2004) A guide to ions and RNA structure. RNA 10:335–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wilkinson KA, Merino EJ, Weeks KM (2006) Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat Protoc 1:1610–1616

    Article  CAS  PubMed  Google Scholar 

  26. Carrell ST, Tang Z, Mohr S, Lambowitz AM, Thornton CA (2018) Detection of expanded RNA repeats using thermostable group II intron reverse transcriptase. Nucleic Acids Res 46:e1

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Prof. Bé Wieringa for his contribution to supervision of this study as part of R.T.P. van Cruchten’s Ph.D. project and for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derick G. Wansink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

van Cruchten, R.T.P., Wansink, D.G. (2020). In Vitro Synthesis and RNA Structure Probing of CUG Triplet Repeat RNA. In: Richard, GF. (eds) Trinucleotide Repeats. Methods in Molecular Biology, vol 2056. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9784-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9784-8_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9783-1

  • Online ISBN: 978-1-4939-9784-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics