Skip to main content

Validation of Circulating Tumor DNA Assays for Detection of Metastatic Melanoma

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2055))

Abstract

The detection of cell-free, circulating tumor DNA (ctDNA) in the blood of patients with solid tumors is often referred to as “liquid biopsy.” ctDNA is particularly attractive as a candidate biomarker in the blood. It is relatively stable after blood collection, can be easily purified, and can be quantitatively measured with high sensitivity and specificity using advanced technologies. Current liquid biopsy research has focused on detecting and quantifying ctDNA to (1) diagnose and characterize mutations in a patient’s cancer to help select the appropriate treatment; (2) predict clinical outcomes associated with different treatments; and (3) monitor the response and/or progression of a patient’s disease. The diagnostic use of liquid biopsies is probably greatest in tumors where the difficulty and/or risk of obtaining a tissue specimen for molecular diagnostics is high (e.g., lung, colon). In metastatic melanoma, however, obtaining a tissue sample for molecular diagnostics is not typically a major obstacle to patient care plans; rather predicting treatment outcomes and monitoring a patient’s disease course during therapy are considered the current priorities for this cancer type. In this chapter we describe an approach to the validation of ctDNA detection assays for melanoma, focusing primarily on analytical validation, and provide methods to guide the use of droplet digital PCR assays for measuring ctDNA levels in plasma samples.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mandel P, Metais P (1948) Les acides nucleiques du plasma sanguin chez l'homme. CR Seances Soc Biol Fil 142:241–243

    CAS  Google Scholar 

  2. Leon S, Shapiro B, Sklaroff D et al (1977) Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37:646–650

    CAS  PubMed  Google Scholar 

  3. Thierry A, El Messaoudi S, Gahan P et al (2016) Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev 35:347–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Snyder MW, Kircher M, Hill AJ et al (2016) Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164:57–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Underhill HR, Kitzman JO, Hellwig S et al (2016) Fragment length of circulating tumor DNA. PLoS Genet 12:e1006162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Diehl F, Li M, Dressman D et al (2005) Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A 102:16368–16373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lo YD, Zhang J, Leung TN et al (1999) Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet 64:218–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bettegowda C, Sausen M, Leary RJ et al (2014) Detection of circulating tumor DNA in early-and late-stage human malignancies. Sci Transl Med 6:224ra224

    Article  CAS  Google Scholar 

  9. Santiago-Walker A, Gagnon R, Mazumdar J et al (2016) Correlation of BRAF mutation status in circulating-free DNA and tumor and association with clinical outcome across four BRAFi and MEKi clinical trials. J Clin Cancer Res 22:567–574

    Article  CAS  Google Scholar 

  10. Phallen J, Sausen M, Adleff V et al (2017) Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med 9:eaan2415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Valpione S, Gremel G, Mundra P et al (2018) Plasma total cell-free DNA (cfDNA) is a surrogate biomarker for tumour burden and a prognostic biomarker for survival in metastatic melanoma patients. Eur J Cancer 88:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grob JJ, Garbe C, Ascierto P et al (2018) Adjuvant melanoma therapy with new drugs: should physicians continue to focus on metastatic disease or use it earlier in primary melanoma? Lancet Oncol 19:E720–E725

    Article  PubMed  Google Scholar 

  13. Yushak M, Chapman P, Robert C et al (2017) Systemic therapy options for patients with unresectable melanoma. In: 2017 American Society of Clinical Oncology Annual Meeting Chicago, Illinois, pp 661–672

    Google Scholar 

  14. Damuzzo V, Solito S, Pinton L et al (2016) Clinical implication of tumor-associated and immunological parameters in melanoma patients treated with ipilimumab. Oncoimmunology 5:e1249559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Diem S, Kasenda B, Spain L et al (2016) Serum lactate dehydrogenase as an early marker for outcome in patients treated with anti-PD-1 therapy in metastatic melanoma. Br J Cancer 114:256–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Menzies AM, Wilmott JS, Drummond M et al (2015) Clinicopathologic features associated with efficacy and long-term survival in metastatic melanoma patients treated with BRAF or combined BRAF and MEK inhibitors. Cancer 121:3826–3835

    Article  CAS  PubMed  Google Scholar 

  17. Weide B, Martens A, Hassel JC et al (2016) Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab. Clin Cancer Res 22:5487–5496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Menzies AM, Haydu LE, Visintin L et al (2012) Distinguishing clinicopathologic features of patients with V600E and V600K BRAF-mutant metastatic melanoma. Clin Cancer Res 18:3242–3249

    Article  CAS  PubMed  Google Scholar 

  19. Balch CM, Gershenwald JE, Soong SJ et al (2009) Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 27:6199–6206

    Article  PubMed  PubMed Central  Google Scholar 

  20. Coit DG, Thompson JA, Albertini MR et al. (2019) Cutaneous Melanoma, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology

    Google Scholar 

  21. Egberts F, Hitschler WN, Weichenthal M et al (2009) Prospective monitoring of adjuvant treatment in high-risk melanoma patients: lactate dehydrogenase and protein S-100B as indicators of relapse. Melanoma Res 19:31–35

    Article  CAS  PubMed  Google Scholar 

  22. Hwu W, Balch C, Houghton A (2003) Diagnosis of stage IV disease. In: Balch CMHA, Sober A, Soong S (eds) Cutaneous melanoma. Quality Medical, St. Louis, pp 523–546

    Google Scholar 

  23. Wolchok JD, Hoos A, O'day S et al (2009) Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res 15:7412–7420

    Article  CAS  PubMed  Google Scholar 

  24. Cancer Genome Atlas Network. Electronic Address IMO, Cancer Genome Atlas N (2015) Genomic classification of cutaneous melanoma. Cell 161:1681–1696

    Article  CAS  Google Scholar 

  25. Griewank KG, Murali R, Puig-Butille JA et al (2014) TERT promoter mutation status as an independent prognostic factor in cutaneous melanoma. J Natl Cancer Inst 106:djv049

    Article  CAS  Google Scholar 

  26. Horn S, Figl A, Rachakonda PS et al (2013) TERT promoter mutations in familial and sporadic melanoma. Science 339:959–961

    Article  CAS  PubMed  Google Scholar 

  27. Huang FW, Hodis E, Xu MJ et al (2013) Highly recurrent TERT promoter mutations in human melanoma. Science 339:957–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jenkins S, Yang JC, Ramalingam SS et al (2017) Plasma ctDNA analysis for detection of the EGFR T790M mutation in patients with advanced non–small cell lung cancer. J Thorac Oncol 12:1061–1070

    Article  PubMed  Google Scholar 

  29. Diehl F, Schmidt K, Choti MA et al (2008) Circulating mutant DNA to assess tumor dynamics. Nat Med 14:985

    Article  CAS  PubMed  Google Scholar 

  30. Baker M (2012) Digital PCR hits its stride. Nat Methods 9:541–544

    Article  CAS  Google Scholar 

  31. Hovelson DH, Liu C-J, Wang Y et al (2017) Rapid, ultra low coverage copy number profiling of cell-free DNA as a precision oncology screening strategy. Oncotarget 8:89848–89866

    Article  PubMed  PubMed Central  Google Scholar 

  32. Manier S, Park J, Capelletti M et al (2018) Whole-exome sequencing of cell-free DNA and circulating tumor cells in multiple myeloma. Nat Commun 9:1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shu Y, Wu X, Tong X et al (2017) Circulating tumor DNA mutation profiling by targeted next generation sequencing provides guidance for personalized treatments in multiple cancer types. Sci Rep 7:583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Pel J, Leung A, Choi WW et al (2018) Rapid and highly-specific generation of targeted DNA sequencing libraries enabled by linking capture probes with universal primers. PLoS One 13:e0208283

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chaudhuri AA, Chabon JJ, Lovejoy AF et al (2017) Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Discov 7:1394–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Clark TA, Chung JH, Kennedy M et al (2018) Analytical validation of a hybrid capture–based next-generation sequencing clinical assay for genomic profiling of cell-free circulating tumor DNA. J Mol Diagn 20:686–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bartels S, Persing S, Hasemeier B et al (2017) Molecular analysis of circulating cell-free DNA from lung cancer patients in routine laboratory practice: a cross-platform comparison of three different molecular methods for mutation detection. J Mol Diagn 19:722–732

    Article  CAS  PubMed  Google Scholar 

  38. Schwarze K, Buchanan J, Taylor JC et al (2018) Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet Med 20:1122–1130

    Article  PubMed  Google Scholar 

  39. Premarket Approval (PMA) cobas EGFR Mutation Test v2 (2016) US Food & Drug Administration. https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm504540.htm

  40. Bustin SA, Nolan T (2004) Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J Biomol Tech 15:155–166

    PubMed  PubMed Central  Google Scholar 

  41. Richardson AL, Iglehart JD (2012) BEAMing up personalized medicine: mutation detection in blood. Clin Cancer Res 18(12):3209–3211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lipson EJ, Velculescu VE, Pritchard TS et al (2014) Circulating tumor DNA analysis as a real-time method for monitoring tumor burden in melanoma patients undergoing treatment with immune checkpoint blockade. J Immunother Cancer 2:42

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rowe SP, Luber B, Makell M et al (2018) From validity to clinical utility: the influence of circulating tumor DNA on melanoma patient management in a real-world setting. Mol Oncol 12:1661–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Basu AS (2017) Digital assays part I: partitioning statistics and digital PCR. SLAS Technol 22:369–386

    Article  PubMed  Google Scholar 

  45. Pinheiro L, Emslie KR (2018) Basic concepts and validation of digital PCR measurements. In: Digital PCR. Springer, New York, pp 11–24

    Chapter  Google Scholar 

  46. Hindson BJ, Ness KD, Masquelier DA et al (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83:8604–8610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Milbury CA, Zhong Q, Lin J et al (2014) Determining lower limits of detection of digital PCR assays for cancer-related gene mutations. Biomol Detect Quantif 1:8–22

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sanmamed MF, Fernandez-Landazuri S, Rodriguez C et al (2015) Quantitative cell-free circulating BRAFV600E mutation analysis by use of droplet digital PCR in the follow-up of patients with melanoma being treated with BRAF inhibitors. Clin Chem 61:297–304

    Article  CAS  PubMed  Google Scholar 

  49. Corless BC, Chang GA, Cooper S et al (2019) Development of novel mutation-specific droplet digital PCR assays detecting TERT promoter mutations in tumor and plasma samples. J Mol Diagn 21:274–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oxnard GR, Paweletz CP, Kuang Y et al (2014) Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res 20:1698–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Findlay SD, Vincent KM, Berman JR et al (2016) A digital PCR-based method for efficient and highly specific screening of genome edited cells. PLoS One 11:e0153901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Bidshahri R, Attali D, Fakhfakh K et al (2016) Quantitative detection and resolution of BRAF V600 status in colorectal cancer using droplet digital PCR and a novel wild-type negative assay. J Mol Diagn 18:190–204

    Article  CAS  PubMed  Google Scholar 

  53. Decraene C, Silveira AB, Bidard F-C et al (2018) Multiple hotspot mutations scanning by single droplet digital PCR. Clin Chem 64:317–328

    Article  CAS  PubMed  Google Scholar 

  54. Bowman RL, Busque L, Levine RL (2018) Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell 22:157–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fuster JJ, Walsh K (2018) Somatic mutations and clonal hematopoiesis: unexpected potential new drivers of age-related cardiovascular disease. Circ Res 122:523–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hu Y, Ulrich B, Supplee J et al (2018) False positive plasma genotyping due to clonal hematopoiesis. Clin Cancer Res 24:4437–4443

    Article  CAS  PubMed  Google Scholar 

  57. Masucci GV, Cesano A, Hawtin R et al (2016) Validation of biomarkers to predict response to immunotherapy in cancer: Volume I—pre-analytical and analytical validation. J Immunother Cancer 4:76

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lee JW, Devanarayan V, Barrett YC et al (2005) Fit-for-purpose method development and validation for successful biomarker measurement. Pharm Res 23:312–328

    Article  CAS  Google Scholar 

  59. Dobbin KK, Cesano A, Alvarez J et al (2016) Validation of biomarkers to predict response to immunotherapy in cancer: Volume II—clinical validation and regulatory considerations. J Immunother Cancer 4:77

    Article  PubMed  PubMed Central  Google Scholar 

  60. Devonshire AS, Whale AS, Gutteridge A et al (2014) Towards standardisation of cell-free DNA measurement in plasma: controls for extraction efficiency, fragment size bias and quantification. Anal Bioanal Chem 406:6499–6512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sherwood JL, Corcoran C, Brown H et al (2016) Optimised pre-analytical methods improve KRAS mutation detection in circulating tumour DNA (ctDNA) from patients with non-small cell lung cancer (NSCLC). PLoS One 11:e0150197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Lee TH, Montalvo L, Chrebtow V et al (2001) Quantitation of genomic DNA in plasma and serum samples: higher concentrations of genomic DNA found in serum than in plasma. Transfusion 41:276–282

    Article  CAS  PubMed  Google Scholar 

  63. Parpart-Li S, Bartlett B, Popoli M et al (2017) The effect of preservative and temperature on the analysis of circulating tumor DNA. Clin Cancer Res 23:2471–2477

    Article  CAS  PubMed  Google Scholar 

  64. Barra GB, Santa Rita TH, De Almeida Vasques J et al (2015) EDTA-mediated inhibition of DNases protects circulating cell-free DNA from ex vivo degradation in blood samples. Clin Biochem 48:976–981

    Article  CAS  PubMed  Google Scholar 

  65. Van Ginkel JH, Van Den Broek DA, Van Kuik J et al (2017) Preanalytical blood sample workup for cell-free DNA analysis using Droplet Digital PCR for future molecular cancer diagnostics. Cancer Med 6:2297–2307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Lam NYL, Rainer TH, Chiu RWK et al (2004) EDTA is a better anticoagulant than heparin or citrate for delayed blood processing for plasma DNA analysis. Clin Chem 50:256–257

    Article  CAS  PubMed  Google Scholar 

  67. Hidestrand M, Stokowski R, Song K et al (2012) Influence of temperature during transportation on cell-free DNA analysis. Fetal Diagn Ther 31:122–128

    Article  PubMed  Google Scholar 

  68. Hyland CA, Millard GM, O'brien H et al (2017) Non-invasive fetal RHD genotyping for RhD negative women stratified into RHD gene deletion or variant groups: comparative accuracy using two blood collection tube types. Pathology 49:757–764

    Article  PubMed  Google Scholar 

  69. Warton K, Yuwono NL, Cowley MJ et al (2017) Evaluation of Streck BCT and PAXgene stabilised blood collection tubes for cell-free circulating DNA studies in plasma. Mol Diagn Ther 21:563–570

    Article  CAS  PubMed  Google Scholar 

  70. Markus H, Contente-Cuomo T, Farooq M et al (2018) Evaluation of pre-analytical factors affecting plasma DNA analysis. Sci Rep 8:7375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Chiu RW, Poon LL, Lau TK et al (2001) Effects of blood-processing protocols on fetal and total DNA quantification in maternal plasma. Clin Chem 47:1607–1613

    Article  CAS  PubMed  Google Scholar 

  72. Sorber L, Zwaenepoel K, Deschoolmeester V et al (2017) A comparison of cell-free DNA isolation kits: isolation and quantification of cell-free DNA in plasma. J Mol Diagn 19:162–168

    Article  CAS  PubMed  Google Scholar 

  73. Syeda MM, Karlin-Neumann G, Osman I, Polsky D (2019) Analysis of nucleosomal DNA as an extraction control for plasma-based circulating tumor DNA assays [abstract]. In: Proceedings of the 110th Annual Meeting of the American Association for Cancer Research; 2019 March 29–April 3; Atlanta, GA. Philadelphia (PA): AACR; 2019. Abstract #2239

    Google Scholar 

  74. Corcoran RB, Chabner BA (2018) Application of Cell-free DNA analysis to cancer treatment. N Engl J Med 379:1754–1765

    Article  CAS  PubMed  Google Scholar 

  75. Bioanalytical Method Validation Guidance for Industry (2018) U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM). https://www.fda.gov/media/70858/download

  76. Cobas EGFR Mutation Test v2 FDA Summary of Safety and Effectiveness Data (2016) US Food and Drug Administration. https://www.accessdata.fda.gov/cdrh_docs/pdf15/P150047B.pdf

  77. Dingle TC, Sedlak RH, Cook L et al (2013) Tolerance of droplet-digital PCR vs. real-time quantitative PCR to inhibitory substances. Clin Chem 59:1670–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mcarthur GA, Chapman PB, Robert C et al (2014) Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol 15:323–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Armbruster DA, Pry T (2008) Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev 29:S49–S52

    PubMed  PubMed Central  Google Scholar 

  80. Calapre L, Warburton L, Millward M et al (2017) Circulating tumour DNA (ctDNA) as a liquid biopsy for melanoma. Cancer Lett 404:62–69

    Article  CAS  PubMed  Google Scholar 

  81. Lee J, Long G, Boyd S et al (2017) Circulating tumour DNA predicts response to anti-PD1 antibodies in metastatic melanoma. Ann Oncol 28:1130–1136

    Article  CAS  PubMed  Google Scholar 

  82. Lee RJ, Gremel G, Marshall A et al (2017) Circulating tumor DNA predicts survival in patients with resected high-risk stage II/III melanoma. Ann Oncol 29:490–496

    Article  PubMed Central  Google Scholar 

  83. Syeda MM, Corless B, Wilson M, Lee Y, Tchack J, Wechter T, Moran U, Karlin-Neumann G, Pavlick AC, Osman I, Shao Y, Polsky D (2018) Analysis of TERTmutant circulating tumor DNA as a potential biomarker of disease activity in patients with unresectable stage III/IV melanoma receiving immuno-oncology therapies [abstract]. In: Proceedings of the 109th Annual Meeting of the American Association for Cancer Research; 2018 Apr 14–18; Chicago, Illinois. Philadelphia (PA): AACR; 2018. Abstract #5534

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Polsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Syeda, M.M., Wiggins, J.M., Corless, B., Spittle, C., Karlin-Neumann, G., Polsky, D. (2020). Validation of Circulating Tumor DNA Assays for Detection of Metastatic Melanoma. In: Thurin, M., Cesano, A., Marincola, F. (eds) Biomarkers for Immunotherapy of Cancer. Methods in Molecular Biology, vol 2055. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9773-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9773-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9772-5

  • Online ISBN: 978-1-4939-9773-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics