Skip to main content

Germline Genetics in Immuno-oncology: From Genome-Wide to Targeted Biomarker Strategies

  • Protocol
  • First Online:
Biomarkers for Immunotherapy of Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2055))

Abstract

In immuno-oncology (IO), the baseline host factors attract significant clinical interest as promising predictive biomarker candidates primarily due to the feasibility of noninvasive testing and the personalized potential of IO outcome prediction catered to individual patients. Growing evidence from experimental or population-based studies suggests that the host genetic factors contribute to the immunological status of a patient as it plays out at the multiple rate-limiting steps of the cancer immunity cycle. Recent observations suggest that germline genetics may be associated with tumor microenvironment phenotypes, autoimmune toxicities, and/or efficacy of immunotherapy regimens and overall cancer survival. Despite these highly intriguing indications, the potential of germline genetic factors as personalized biomarkers of immune-checkpoint inhibition (ICI) remains vastly unexplored. In this chapter, we review the rationale for exploring the germline genetic factors as novel biomarkers predictive of IO outcomes, including ICI efficacy, toxicity, or survival, and discuss the approaches for the identification of such germline genetic surrogates. Specifically, we focus on strategies for mapping the germline genetic biomarkers of ICI using genome-wide scans (genome-wide association analyses, next-generation sequencing technologies), followed by targeted assays, to be applied in clinical use. As we discuss the limitations, we highlight a need for large collaborative consortia in these efforts and sketch possible avenues for incorporating germline genetic factors into emerging multifactorial approaches for more personalized prediction of ICI outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schadendorf D et al (2015) Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 33:1889–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ribas A et al (2013) Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J Clin Oncol 31:616–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010:711–723

    Article  Google Scholar 

  4. Ribas A et al (2015) Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol 16:908–918. https://doi.org/10.1016/S1470-2045(15)00083-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weber JS et al (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16:375–384. https://doi.org/10.1016/S1470-2045(15)70076-8

    Article  CAS  PubMed  Google Scholar 

  6. Wolchok JD et al (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369:122–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Larkin J et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:23–34

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bertrand A, Kostine M, Truchetet M-E, Schaeverbeke T, Barnetche T (2015) Immune related adverse events associated with anti-CTLA-4 antibodies: systematic review and meta-analysis. BMC Med 13:211

    Article  PubMed  PubMed Central  Google Scholar 

  9. Snyder A et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371:2189–2199

    Article  PubMed  PubMed Central  Google Scholar 

  10. Carbognin L et al (2015) Differential activity of nivolumab, pembrolizumab and MPDL3280A according to the tumor expression of programmed death-ligand-1 (PD-L1): sensitivity analysis of trials in melanoma, lung and genitourinary cancers. PLoS One 10:e0130142

    Article  PubMed  PubMed Central  Google Scholar 

  11. Orru V et al (2013) Genetic variants regulating immune cell levels in health and disease. Cell 155:242–256. https://doi.org/10.1016/j.cell.2013.08.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Patin E et al (2018) Natural variation in the parameters of innate immune cells is preferentially driven by genetic factors. Nat Immunol 19:302. https://doi.org/10.1038/s41590-018-0049-7

    Article  CAS  PubMed  Google Scholar 

  13. Roederer M et al (2015) The genetic architecture of the human immune system: a bioresource for autoimmunity and disease pathogenesis. Cell 161:387–403. https://doi.org/10.1016/j.cell.2015.02.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Duffy D et al (2014) Functional analysis via standardized whole-blood stimulation systems defines the boundaries of a healthy immune response to complex stimuli. Immunity 40:436–450. https://doi.org/10.1016/j.immuni.2014.03.002

    Article  CAS  PubMed  Google Scholar 

  15. Li Y et al (2016) A functional genomics approach to understand variation in cytokine production in humans. Cell 167:1099. https://doi.org/10.1016/j.cell.2016.10.017

    Article  CAS  PubMed  Google Scholar 

  16. Urrutia A et al (2016) Standardized whole-blood transcriptional profiling enables the Deconvolution of complex induced immune responses. Cell Rep 16:2777–2791. https://doi.org/10.1016/j.celrep.2016.08.011

    Article  CAS  PubMed  Google Scholar 

  17. Ben-Ali M et al (2011) Functional characterization of naturally occurring genetic variants in the human TLR1-2-6 gene family. Hum Mutat 32:643–652. https://doi.org/10.1002/humu.21486

    Article  CAS  PubMed  Google Scholar 

  18. Pickrell JK et al (2010) Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464:768–772. https://doi.org/10.1038/nature08872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cheung VG et al (2003) Natural variation in human gene expression assessed in lymphoblastoid cells. Nat Genet 33:422–425. https://doi.org/10.1038/ng1094

    Article  CAS  PubMed  Google Scholar 

  20. Stranger BE et al (2005) Genome-wide associations of gene expression variation in humans. PLoS Genet 1:695–704. https://doi.org/10.1371/journal.pgen.0010078

    Article  CAS  Google Scholar 

  21. Parkes M, Cortes A, van Heel DA, Brown MA (2013) Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat Rev Genet 14:661–673. https://doi.org/10.1038/nrg3502

    Article  CAS  PubMed  Google Scholar 

  22. Lim YW et al (2018) Germline genetic polymorphisms influence tumor gene expression and immune cell infiltration. Proc Natl Acad Sci U S A 115:E11701-E11710. https://doi.org/10.1073/pnas.1804506115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Breunis WB et al (2008) Influence of cytotoxic T lymphocyte-associated antigen 4 (CTLA4) common polymorphisms on outcome in treatment of melanoma patients with CTLA-4 blockade. J Immunother 1997(31):586

    Article  Google Scholar 

  24. Queirolo P et al (2013) Association of CTLA-4 polymorphisms with improved overall survival in melanoma patients treated with CTLA-4 blockade: a pilot study. Cancer Invest 31:336–345

    Article  CAS  PubMed  Google Scholar 

  25. Karasaki T et al (2017) An Immunogram for the cancer-immunity cycle: towards personalized immunotherapy of lung cancer. J Thorac Oncol 12:791–803. https://doi.org/10.1016/j.jtho.2017.01.005

    Article  PubMed  Google Scholar 

  26. Mehrotra M et al (2018) Detection of somatic mutations in cell-free DNA in plasma and correlation with overall survival in patients with solid tumors. Oncotarget 9:10259–10271. https://doi.org/10.18632/oncotarget.21982

    Article  PubMed  Google Scholar 

  27. van Dijk N et al (2019) The cancer Immunogram as a framework for personalized immunotherapy in Urothelial cancer. Eur Urol 75(3):435–444. https://doi.org/10.1016/j.eururo.2018.09.022

    Article  CAS  PubMed  Google Scholar 

  28. Carr EJ et al (2016) The cellular composition of the human immune system is shaped by age and cohabitation. Nat Immunol 17:461. https://doi.org/10.1038/ni.3371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marson A, Housley WJ, Hafler DA (2015) Genetic basis of autoimmunity. J Clin Invest 125:2234–2241. https://doi.org/10.1172/Jci78086

    Article  PubMed  PubMed Central  Google Scholar 

  30. Brodin P et al (2015) Variation in the human immune system is largely driven by non-heritable influences. Cell 160:37–47. https://doi.org/10.1016/j.cell.2014.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ahmadi KR et al (2001) Genetic determinism in the relationship between human CD4(+) and CD8(+) T lymphocyte populations? Genes Immun 2:381–387. https://doi.org/10.1038/sj.gene.6363796

    Article  CAS  PubMed  Google Scholar 

  32. Mangino M, Roederer M, Beddall MH, Nestle FO, Spector TD (2017) Innate and adaptive immune traits are differentially affected by genetic and environmental factors. Nat Commun 8:13850. https://doi.org/10.1038/ncomms13850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Borsellino G et al (2007) Expression of ectonucleotidase CD39 by Foxp3(+) Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110:1225–1232. https://doi.org/10.1182/blood-2006-12-064527

    Article  CAS  PubMed  Google Scholar 

  34. Antonioli L, Blandizzi C, Pacher P, Hasko G (2013) Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer 13:842–857. https://doi.org/10.1038/nrc3613

    Article  CAS  PubMed  Google Scholar 

  35. Tumeh PC et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568. https://doi.org/10.1038/nature13954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Aran D, Sirota M, Butte AJ (2015) Systematic pan-cancer analysis of tumour purity. Nat Commun 6:8971. https://doi.org/10.1038/ncomms9971

    Article  CAS  PubMed  Google Scholar 

  37. Nicolae DL et al (2010) Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet 6:e1000888. https://doi.org/10.1371/journal.pgen.1000888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gamazon ER, Huang RS, Cox NJ, Dolan ME (2010) Chemotherapeutic drug susceptibility associated SNPs are enriched in expression quantitative trait loci. Proc Natl Acad Sci U S A 107:9287–9292. https://doi.org/10.1073/pnas.1001827107

    Article  PubMed  PubMed Central  Google Scholar 

  39. Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18:220. https://doi.org/10.1186/s13059-017-1349-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gajewski TF et al (2013) Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr Opin Immunol 25:268–276. https://doi.org/10.1016/j.coi.2013.02.009

    Article  CAS  PubMed  Google Scholar 

  41. Hegde PS, Karanikas V, Evers S (2016) The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition. Clin Cancer Res 22:1865–1874. https://doi.org/10.1158/1078-0432.CCR-15-1507

    Article  CAS  PubMed  Google Scholar 

  42. Thorsson V et al (2018) The immune landscape of. Cancer Immun 48:812–830. e814. https://doi.org/10.1016/j.immuni.2018.03.023

    Article  CAS  Google Scholar 

  43. Vacchelli E et al (2015) Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science 350:972–978. https://doi.org/10.1126/science.aad0779

    Article  CAS  PubMed  Google Scholar 

  44. Zitvogel L, Kepp O, Kroemer G (2011) Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol 8:151–160. https://doi.org/10.1038/nrclinonc.2010.223

    Article  CAS  PubMed  Google Scholar 

  45. Breunis WB et al (2008) Influence of cytotoxic T lymphocyte-associated antigen 4 (CTLA4) common polymorphisms on outcome in treatment of melanoma patients with CTLA-4 blockade. J Immunother 31:586–590. https://doi.org/10.1097/CJI.0b013e31817fd8f3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hamid O et al (2011) A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J Transl Med 9:204. https://doi.org/10.1186/1479-5876-9-204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chowell D et al (2018) Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359:582–587. https://doi.org/10.1126/science.aao4572

    Article  CAS  PubMed  Google Scholar 

  48. Aldous AR, Dong JZ (2018) Personalized neoantigen vaccines: a new approach to cancer immunotherapy. Bioorg Med Chem 26:2842–2849. https://doi.org/10.1016/j.bmc.2017.10.021

    Article  CAS  PubMed  Google Scholar 

  49. Cotsapas C et al (2011) Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet 7:e1002254. https://doi.org/10.1371/journal.pgen.1002254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gutierrez-Arcelus M, Rich SS, Raychaudhuri S (2016) Autoimmune diseases - connecting risk alleles with molecular traits of the immune system. Nat Rev Genet 17:160–174. https://doi.org/10.1038/nrg.2015.33

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kawasaki A et al (2008) Role of STAT4 polymorphisms in systemic lupus erythematosus in a Japanese population: a case-control association study of the STAT1-STAT4 region. Arthritis Res Ther 10:R113. https://doi.org/10.1186/ar2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kobayashi S et al (2008) Association of STAT4 with susceptibility to rheumatoid arthritis and systemic lupus erythematosus in the Japanese population. Arthritis Rheum 58:1940–1946. https://doi.org/10.1002/art.23494

    Article  PubMed  Google Scholar 

  53. Gupta V et al (2018) Association of ITGAM, TNFSF4, TNFAIP3 and STAT4 gene polymorphisms with risk of systemic lupus erythematosus in a North Indian population. Lupus 27:1973–1979. https://doi.org/10.1177/0961203318786432

    Article  CAS  PubMed  Google Scholar 

  54. Gao X, Wang J, Yu Y (2018) The association between STAT4 rs7574865 polymorphism and the susceptibility of autoimmune thyroid disease: a meta-analysis. Front Genet 9:708. https://doi.org/10.3389/fgene.2018.00708

    Article  CAS  PubMed  Google Scholar 

  55. Ciofani M et al (2012) A validated regulatory network for Th17 cell specification. Cell 151:289–303. https://doi.org/10.1016/j.cell.2012.09.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gustafsson M et al (2015) A validated gene regulatory network and GWAS identifies early regulators of T cell-associated diseases. Sci Transl Med 7:313ra178. https://doi.org/10.1126/scitranslmed.aad2722

    Article  CAS  PubMed  Google Scholar 

  57. Hu G, Chen J (2013) A genome-wide regulatory network identifies key transcription factors for memory CD8(+) T-cell development. Nat Commun 4:2830. https://doi.org/10.1038/ncomms3830

    Article  CAS  PubMed  Google Scholar 

  58. Qu K et al (2015) Individuality and variation of personal regulomes in primary human T cells. Cell Syst 1:51–61. https://doi.org/10.1016/j.cels.2015.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chat V et al (2019) Autoimmune genetic risk variants as germline biomarkers of response to melanoma immune-checkpoint inhibition. Cancer Immunol Immunother 68(6):897–905. https://doi.org/10.1007/s00262-019-02318-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vogelsang M et al (2016) The expression quantitative trait loci in immune pathways and their effect on cutaneous melanoma prognosis. Clin Cancer Res 22:3268–3280. https://doi.org/10.1158/1078-0432.ccr-15-2066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lees CW, Barrett JC, Parkes M, Satsangi J (2011) New IBD genetics: common pathways with other diseases. Gut 60:1739–1753. https://doi.org/10.1136/gut.2009.199679

    Article  CAS  PubMed  Google Scholar 

  62. Wu MC et al (2011) Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 89:82–93. https://doi.org/10.1016/j.ajhg.2011.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ionita-Laza I, Lee S, Makarov V, Buxbaum JD, Lin X (2013) Sequence kernel association tests for the combined effect of rare and common variants. Am J Hum Genet 92:841–853. https://doi.org/10.1016/j.ajhg.2013.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bernardini G, Antonangeli F, Bonanni V, Santoni A (2016) Dysregulation of chemokine/chemokine receptor axes and NK cell tissue localization during diseases. Front Immunol 7:402. https://doi.org/10.3389/fimmu.2016.00402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Le DT et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357:409–413. https://doi.org/10.1126/science.aan6733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Le DT et al (2015) PD-1 blockade in Tumors with mismatch-repair deficiency. N Engl J Med 372:2509–2520. https://doi.org/10.1056/NEJMoa1500596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rendleman J et al (2015) Genetic associations of the interleukin locus at 1q32.1 with clinical outcomes of cutaneous melanoma. J Med Genet 52:231–239. https://doi.org/10.1136/jmedgenet-2014-102832

    Article  CAS  PubMed  Google Scholar 

  68. Sutton BC et al (2017) Assessment of common somatic mutations of EGFR, KRAS, BRAF, NRAS in pulmonary non-small cell carcinoma using iPLEX (R) HS, a new highly sensitive assay for the MassARRAY (R) system. PLoS One 12:e0183715. https://doi.org/10.1371/journal.pone.0183715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rogers TM et al (2017) Multiplexed transcriptome analysis to detect ALK, ROS1 and RET rearrangements in lung cancer. Sci Rep 7:42259. https://doi.org/10.1038/srep42259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mock A et al (2016) LOC283731 promoter hypermethylation prognosticates survival after radiochemotherapy in IDH1 wild-type glioblastoma patients. Int J Cancer 139:424–432. https://doi.org/10.1002/ijc.30069

    Article  CAS  PubMed  Google Scholar 

  71. Saffroy R et al (2017) MET exon 14 mutations as targets in routine molecular analysis of primary sarcomatoid carcinoma of the lung. Oncotarget 8:42428–42437. https://doi.org/10.18632/oncotarget.16403

    Article  PubMed  PubMed Central  Google Scholar 

  72. Pesenti C et al (2018) MassARRAY-based simultaneous detection of hotspot somatic mutations and recurrent fusion genes in papillary thyroid carcinoma: the PTC-MA assay. Endocrine 61:36–41. https://doi.org/10.1007/s12020-017-1483-2

    Article  CAS  PubMed  Google Scholar 

  73. Millstein J, Zhang B, Zhu J, Schadt EE (2009) Disentangling molecular relationships with a causal inference test. BMC Genet 10:23. https://doi.org/10.1186/1471-2156-10-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hemani G, Tilling K, Smith GD (2017) Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet 13:e1007149. https://doi.org/10.1371/journal.pgen.1007081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sade-Feldman M et al (2018) Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175:998–1013 e1020. https://doi.org/10.1016/j.cell.2018.10.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Miraldi ER et al (2019) Leveraging chromatin accessibility for transcriptional regulatory network inference in T helper 17 cells. Genome Res 29(3):449–463. https://doi.org/10.1101/gr.238253.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Kirchhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kirchhoff, T., Ferguson, R. (2020). Germline Genetics in Immuno-oncology: From Genome-Wide to Targeted Biomarker Strategies. In: Thurin, M., Cesano, A., Marincola, F. (eds) Biomarkers for Immunotherapy of Cancer. Methods in Molecular Biology, vol 2055. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9773-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9773-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9772-5

  • Online ISBN: 978-1-4939-9773-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics