Skip to main content

Translating Immuno-oncology Biomarkers to Diagnostic Tests: A Regulatory Perspective

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2055))

Abstract

The rapid development of effective immunotherapy using immune-checkpoint inhibitors (ICIs) against many different cancer types opened a new front in cancer treatment. Immunotherapy is undoubtedly one of the biggest breakthroughs in cancer therapy within the past decade. The identification of predictive biomarkers to select the patients most likely to respond to ICI monotherapies or emerging combination therapies remains one of the major unmet needs for the oncology community.

This chapter provides an overview of existing and emerging biomarkers associated with ICI response. Additionally, using several case studies of FDA approved or authorized in vitro diagnostic oncology devices, this chapter also provides an overview of analytical and clinical validation considerations of diagnostic tests for immuno-oncology biomarkers.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287

    Article  CAS  Google Scholar 

  2. BEST (Biomarkers, EndpointS, and other Tools) Resource (2016) Silver Spring (MD)

    Google Scholar 

  3. Mandrekar SJ, Sargent DJ (2010) Predictive biomarker validation in practice: lessons from real trials. Clin Trials 7:567–573

    Article  Google Scholar 

  4. Califf RM (2018) Biomarker definitions and their applications. Exp Biol Med (Maywood) 243:213–221

    Article  CAS  Google Scholar 

  5. FDA (2014) In Vitro Companion Diagnostic Devices Guidance for Industry and Food and Drug Administration Staff

    Google Scholar 

  6. Roscoe DM, Hu YF, Philip R (2015) Companion diagnostics: a regulatory perspective from the last 5 years of molecular companion diagnostic approvals. Expert Rev Mol Diagn 15:869–880

    Article  CAS  Google Scholar 

  7. Gibney GT, Weiner LM, Atkins MB (2016) Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol 17:e542–ee51

    Article  CAS  Google Scholar 

  8. Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V et al (2017) Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther 16:2598–2608

    Article  CAS  Google Scholar 

  9. Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH et al (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20:5064–5074

    Article  CAS  Google Scholar 

  10. FDA (2016) Summary of Safety and Effectiveness Data for Dako PD-L1 IHC 22C3 pharmDx

    Google Scholar 

  11. FDA (2017) Summary of Safety and Effectiveness Data for Ventana PD-L1 IHC SP263 Assay

    Google Scholar 

  12. FDA (2016) Summary of Safety and Effectiveness Data for VENTANA PD-L1 (SP142) Assay

    Google Scholar 

  13. FDA (2015) Summary of Safety and Effectiveness Data for Dako PD-L1 IHC 28-8 phramDx

    Google Scholar 

  14. FDA-AACR-ASCO Public Workshop (2015) Harmonizing companion diagnostics across a class of targeted therapies

    Google Scholar 

  15. Hirsch FR, McElhinny A, Stanforth D, Ranger-Moore J, Jansson M, Kulangara K et al (2017) PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J Thorac Oncol 12:208–222

    Article  Google Scholar 

  16. Tsao MS, Kerr KM, Kockx M, Beasley MB, Borczuk AC, Botling J et al (2018) PD-L1 immunohistochemistry comparability study in real-life clinical samples: results of blueprint phase 2 project. J Thorac Oncol 13:1302–1311

    Article  Google Scholar 

  17. FDA (2017) Summary of Safety and Effectiveness Data for PD-L1 IHC 22C3 pharmDx in Gastric Cancer

    Google Scholar 

  18. Lemery S, Keegan P, Pazdur R (2017) First FDA approval agnostic of cancer site - when a biomarker defines the indication. N Engl J Med 377:1409–1412

    Article  Google Scholar 

  19. Liu D, Keijzers G, Rasmussen LJ (2017) DNA mismatch repair and its many roles in eukaryotic cells. Mutat Res 773:174–187

    Article  CAS  Google Scholar 

  20. Cicek MS, Lindor NM, Gallinger S, Bapat B, Hopper JL, Jenkins MA et al (2011) Quality assessment and correlation of microsatellite instability and immunohistochemical markers among population- and clinic-based colorectal tumors results from the colon cancer family registry. J Mol Diagn 13:271–281

    Article  CAS  Google Scholar 

  21. Boland CR, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138:2073–2087.e3

    Article  CAS  Google Scholar 

  22. Murphy KM, Zhang S, Geiger T, Hafez MJ, Bacher J, Berg KD et al (2006) Comparison of the microsatellite instability analysis system and the Bethesda panel for the determination of microsatellite instability in colorectal cancers. J Mol Diagn 8:305–311

    Article  CAS  Google Scholar 

  23. FDA (2017) DEN170030 Decision summary for VENTANA MMR IHC panel de novo authorization

    Google Scholar 

  24. Hempelmann JA, Scroggins SM, Pritchard CC, Salipante SJ (2015) MSIplus for integrated colorectal cancer molecular testing by next-generation sequencing. J Mol Diagn 17:705–714

    Article  CAS  Google Scholar 

  25. Kautto EA, Bonneville R, Miya J, Yu L, Krook MA, Reeser JW et al (2017) Performance evaluation for rapid detection of pan-cancer microsatellite instability with MANTIS. Oncotarget 8:7452–7463

    Article  Google Scholar 

  26. Niu B, Ye K, Zhang Q, Lu C, Xie M, McLellan MD et al (2014) MSIsensor: microsatellite instability detection using paired tumor-normal sequence data. Bioinformatics 30:1015–1016

    Article  CAS  Google Scholar 

  27. Abida W, Cheng ML, Armenia J, Middha S, Autio KA, Vargas HA et al (2018) Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade. JAMA Oncol

    Google Scholar 

  28. Salipante SJ, Scroggins SM, Hampel HL, Turner EH, Pritchard CC (2014) Microsatellite instability detection by next generation sequencing. Clin Chem 60:1192–1199

    Article  CAS  Google Scholar 

  29. FDA (2017) DEN170058 decision summary for MSK-IMPACT

    Google Scholar 

  30. Wong PF, Wei W, Smithy JW, Acs B, Toki MI, Blenman KRM et al (2019) Multiplex quantitative analysis of tumor-infiltrating lymphocytes and immunotherapy outcome in metastatic melanoma. Clin Cancer Res

    Google Scholar 

  31. FDA (2016) K150588 decision summary for OVA1 Next Generation Test

    Google Scholar 

  32. Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R et al (2017) Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 9:34

    Article  Google Scholar 

  33. Gandara DR, Paul SM, Kowanetz M, Schleifman E, Zou W, Li Y et al (2018) Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat Med 24:1441–1448

    Article  CAS  Google Scholar 

  34. Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C et al (2018) Nivolumab plus Ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med 378:2093–2104

    Article  CAS  Google Scholar 

  35. Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D et al (2018) Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol 36:633–641

    Article  CAS  Google Scholar 

  36. Baker RG, Hoos AX, Adam SJ, Wholley D, Doroshow JH, Lowy DR et al (2018) The Partnership for Accelerating Cancer Therapies. Cancer J 24:111–114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reena Philip .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, Y., Veeraraghavan, J., Philip, R. (2020). Translating Immuno-oncology Biomarkers to Diagnostic Tests: A Regulatory Perspective. In: Thurin, M., Cesano, A., Marincola, F. (eds) Biomarkers for Immunotherapy of Cancer. Methods in Molecular Biology, vol 2055. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9773-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9773-2_31

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9772-5

  • Online ISBN: 978-1-4939-9773-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics